dc.identifier.citation |
[1] A. Nsair, S. O. Cinar, A. Alassali, H. A. Qdais, and K. Kuchta, “Operational Parameters of Biogas Plants: A Review and Evaluation Study,” Energies, vol. 13, no. 15, 2020, doi: 10.3390/en13153761. [2] J. N. Meegoda, B. Li, K. Patel, and L. B. Wang, “A review of the processes, parameters, and optimization of anaerobic digestion,” Int. J. Environ. Res. Public Health, vol. 15, no. 10, 2018, doi: 10.3390/ijerph15102224. [3] Y. Vögeli, C. Riu, A. Gallardo, S. Diener, and C. Zurbrügg, Anaerobic Digestion of Biowaste in Developing Countries. 2014. [4] E. Uçkun Kiran, A. P. Trzcinski, W. J. Ng, and Y. Liu, “Bioconversion of food waste to energy: A review,” Fuel, vol. 134, no. June, pp. 389–399, 2014, doi: 10.1016/j.fuel.2014.05.074. [5] H. Ma, Q. Wang, D. Qian, L. Gong, and W. Zhang, “The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage,” Renew. Energy, vol. 34, no. 6, 2009, doi: 10.1016/j.renene.2008.10.020. [6] S. K. Han and H. S. Shin, “Biohydrogen production by anaerobic fermentation of food waste,” Int. J. Hydrogen Energy, vol. 29, no. 6, 2004, doi: 10.1016/j.ijhydene.2003.09.001. [7] K. F. Shariar and H. Al Bustam, “Waste to energy: A new dimension in generating electricity in Bangladesh,” WCSE 2012 - Int. Work. Comput. Sci. Eng., vol. 4, no. 4, pp. 480–483, 2012, doi: 10.7763/ijet.2012.v4.415. [8] A. H. Baky and M. Nazmul, “ES2014-6756 Production of Biogas by Anaerobic Digestion of Food waste and Process Simulation,” pp. 1–7, 2016. [9] N. Curry and P. Pillay, “Biogas prediction and design of a food waste to energy system for the urban environment,” Renew. Energy, vol. 41, pp. 200–209, 2012, doi: 10.1016/j.renene.2011.10.019. [10] E. Ogur and S. Mbatia, “Conversion of Kitchen Waste into Biogas,” Int. J. Eng. Sci., vol. 2, no. 11, pp. 70–76, 2013. [11] H. D. Beyene, A. A. Werkneh, and T. G. Ambaye, “Current updates on waste to energy (WtE) technologies: a review,” Renew. Energy Focus, vol. 24, no. 00, pp. 1–11, 2018, doi: 10.1016/j.ref.2017.11.001. [12] M. S. Rao, S. P. Singh, A. K. Singh, and M. S. Sodha, “Bioenergy conversion studies of the organic fraction of MSW: Assessment of ultimate bioenergy production potential of municipal garbage,” Appl. Energy, vol. 66, no. 1, 2000, doi: 10.1016/S0306-2619(99)00056-2. [13] M. S. Rao and S. P. Singh, “Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation,” 69 Bioresour. Technol., vol. 95, no. 2, 2004, doi: 10.1016/j.biortech.2004.02.013. [14] Q. Wang, X. Wang, X. Wang, H. Ma, and N. Ren, “Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species,” in Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, vol. 40, no. 10, doi: 10.1080/10934520500184624. [15] Z. Youcai and Z. Tao, “Anaerobic fermentation process for biohydrogen production from food waste,” in Biohydrogen Production and Hybrid Process Development, 2021. [16] G. W. Norton, “Economic and environmental impacts of IPM,” vol. 8, no. 3, pp. 271–277, 1994. [17] A. Al-Wahaibi et al., “Techno-economic evaluation of biogas production from food waste via anaerobic digestion,” Sci. Rep., vol. 10, no. 1, pp. 1–16, 2020, doi: 10.1038/s41598-020-72897-5. [18] J. Kuo and J. Dow, “Biogas production from anaerobic digestion of food waste and relevant air quality implications,” J. Air Waste Manag. Assoc., vol. 67, no. 9, pp. 1000–1011, 2017, doi: 10.1080/10962247.2017.1316326. [19] H. S. Shin and J. H. Youn, “Conversion of food waste into hydrogen by thermophilic acidogenesis,” Biodegradation, vol. 16, no. 1, 2005, doi: 10.1007/s10531-004-0377-9. [20] M. Melikoglu, C. S. K. Lin, and C. Webb, “Analysing global food waste problem: Pinpointing the facts and estimating the energy content,” Cent. Eur. J. Eng., vol. 3, no. 2, 2013, doi: 10.2478/s13531-012-0058-5. [21] E. S. Rosas-Mendoza, A. Alvarado-Vallejo, N. A. Vallejo-Cantú, R. Snell-Castro, S. Martínez-Hernández, and A. Alvarado-Lassman, “Batch and semi-continuous anaerobic digestion of industrial solid citruswaste for the production of bioenergy,” Processes, vol. 9, no. 4, pp. 1–16, 2021, doi: 10.3390/pr9040648. [22] M. Islam, B. Salam, and A. Mohajan, “Icme09-Th-19 Generation of Biogas From Anerobic Digestion of Vegetable Waste,” vol. 2009, no. December, pp. 26–28, 2009. [23] A. E. Cioabla, I. Ionel, G. A. Dumitrel, and F. Popescu, “Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues,” Biotechnol. Biofuels, vol. 5, no. ii, pp. 1–9, 2012, doi: 10.1186/1754-6834-5-39. [24] O. N. Medvedeva and S. D. Perevalov, “Mathematical Modeling of the Process of the Gas Generation and Gas Purification of the Biogas on Polygon of Residential Solid Waste,” IOP Conf. Ser. Earth Environ. Sci., vol. 459, no. 3, 2020, doi: 10.1088/1755-1315/459/3/032004. [25] A. S. Chowdhury, S. Saagoto, A. Islam, and S. Hossen, “A Review of Different Working Fluids Used in the Power Sector.” [26] N. Harun, N. A. Othman, N. A. Zaki, N. A. Mat Rasul, R. A. Samah, and H. Hashim, 70 “Simulation of Anaerobic Digestion for Biogas Production from Food Waste Using SuperPro Designer,” Mater. Today Proc., vol. 19, pp. 1315–1320, 2019, doi: 10.1016/j.matpr.2019.11.143. [27] G. A. Gebreslase, F. G. Gebrihet, and M. M. Atsbha, “Process Simulation and Design of Biogas Plant using Food Waste as Feedstock,” Int. J. Innov. Sci. Res. Technol., vol. 3, no. 7, pp. 573–599, 2018. [28] R. Kleerebezem, “Biochemical Conversion: Anaerobic Digestion,” in Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes, vol. 9781118304914, 2014. [29] R. Kleerebezem and M. C. van Loosdrecht, “Mixed culture biotechnology for bioenergy production,” Current Opinion in Biotechnology, vol. 18, no. 3. 2007, doi: 10.1016/j.copbio.2007.05.001. [30] K. M. Rahman, L. Melville, D. J. Edwards, D. Fulford, and W. D. Thwala, “Determination of the Potential Impact of Domestic Anaerobic Digester Systems: A Community Based Research Initiative in Rural Bangladesh,” Processes, vol. 7, no. 8, p. 512, 2019, doi: 10.3390/pr7080512. [31] W. K. Biswas, P. Bryce, and M. Diesendorf, “Model for empowering rural poor through renewable energy technologies in Bangladesh,” Environ. Sci. Policy, vol. 4, no. 6, pp. 333–344, 2001, doi: 10.1016/S1462-9011(01)00031-4. [32] S. A. Iqbal, S. Rahaman, and A. Yousuf, “Present scenario of biogas technology in Bangladesh-prospects, potentials and barriers,” Proc. 15th Annu. Pap. meet, vol. 7, no. March 2015, p. 8, 2014. [33] O. Alam and X. Qiao, “An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh,” Sustain. Cities Soc., vol. 52, p. 101775, Jan. 2020, doi: 10.1016/J.SCS.2019.101775. [34] M. Obrecht, “BIOGAS — SUSTAINABLE ENERGY SOURCE : NEW POSSIBILITIES AND MEASURES FOR SLOVENIA BIOPLIN — TRAJNOSTNI VIR ENERGIJE :,” no. January 2018, 2011. [35] A. H. Baky, M. N. H. Khan, F. Kader, and H. A. Chowdhury, “Production of biogas by anaerobic digestion of food waste and process simulation,” ASME 2014 8th Int. Conf. Energy Sustain. ES 2014 Collocated with ASME 2014 12th Int. Conf. Fuel Cell Sci. Eng. Technol., vol. 2, no. 3, pp. 79–83, 2014, doi: 10.1115/ES2014-6756. [36] “Commercial Biogas Seminar in Bangladesh.” . [37] S. J. Ojolo, R. R. Dinrifo, and K. B. Adesuyi, “Comparative Study of Biogas Production from Five Substrates,” Adv. Mater. Res., vol. 18–19, pp. 519–525, 2007, doi: 10.4028/www.scientific.net/amr.18-19.519. [38] X. Y. Gu, J. Z. Liu, and J. W. C. Wong, “Control of lactic acid production during hydrolysis 71 and acidogenesis of food waste,” Bioresour. Technol., vol. 247, 2018, doi: 10.1016/j.biortech.2017.09.166. [39] A. Inayat, S. F. Ahmed, F. Djavanroodi, F. Al-Ali, M. Alsallani, and S. Mangoosh, “Process Simulation and Optimization of Anaerobic Co-Digestion,” Front. Energy Res., vol. 9, no. November, pp. 1–7, 2021, doi: 10.3389/fenrg.2021.764463. [40] R. B. Carneiro, L. Gonzalez-Gil, Y. A. Londoño, M. Zaiat, M. Carballa, and J. M. Lema, “Acidogenesis is a key step in the anaerobic biotransformation of organic micropollutants,” J. Hazard. Mater., vol. 389, 2020, doi: 10.1016/j.jhazmat.2019.121888. [41] W. Huang, Z. Wang, Y. Zhou, and W. J. Ng, “The role of hydrogenotrophic methanogens in an acidogenic reactor,” Chemosphere, vol. 140, 2015, doi: 10.1016/j.chemosphere.2014.10.047. [42] X. Wu, W. Yao, and J. Zhu, “Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor,” Int. J. Hydrogen Energy, vol. 35, no. 13, 2010, doi: 10.1016/j.ijhydene.2010.03.097. [43] E. Kovács, R. Wirth, G. Maróti, Z. Bagi, G. Rákhely, and K. L. Kovács, “Biogas Production from Protein-Rich Biomass: Fed-Batch Anaerobic Fermentation of Casein and of Pig Blood and Associated Changes in Microbial Community Composition,” PLoS One, vol. 8, no. 10, 2013, doi: 10.1371/journal.pone.0077265. [44] J. Park, S. Park, and M. Kim, “Anaerobic degradation of amino acids generated from the hydrolysis of sewage sludge,” Environ. Technol. (United Kingdom), vol. 35, no. 9, 2014, doi: 10.1080/09593330.2013.863951. [45] “Biogas from waste and renewable resources: an introduction,” Choice Rev. Online, vol. 46, no. 05, 2009, doi: 10.5860/choice.46-2682. [46] R. Kleerebezem, B. Joosse, R. Rozendal, and M. C. M. Van Loosdrecht, “Anaerobic digestion without biogas?,” Rev. Environ. Sci. Biotechnol., vol. 14, no. 4, pp. 787–801, 2015, doi: 10.1007/s11157-015-9374-6. [47] J. Mata-Alvarez, “The biomethanization of the organic fraction of municipal solid waste,” Water 21, no. OCTOBER, 2002, doi: 10.2166/9781780402994. [48] D. G. Cirne, X. Paloumet, L. Björnsson, M. M. Alves, and B. Mattiasson, “Anaerobic digestion of lipid-rich waste-Effects of lipid concentration,” Renew. Energy, vol. 32, no. 6, 2007, doi: 10.1016/j.renene.2006.04.003. [49] A. J. M. Stams and C. M. Plugge, “Electron transfer in syntrophic communities of anaerobic bacteria and archaea,” Nature Reviews Microbiology, vol. 7, no. 8. 2009, doi: 10.1038/nrmicro2166. [50] R. C. Leitão, A. C. Van Haandel, G. Zeeman, and G. Lettinga, “The effects of operational and environmental variations on anaerobic wastewater treatment systems: A review,” Bioresource Technology, vol. 97, no. 9. 2006, doi: 10.1016/j.biortech.2004.12.007. 72 [51] Z. Lyu, N. Shao, T. Akinyemi, and W. B. Whitman, “Methanogenesis,” Current Biology, vol. 28, no. 13. 2018, doi: 10.1016/j.cub.2018.05.021. [52] A. Kiener and T. Leisinger, “Oxygen Sensitivity of Methanogenic Bacteria,” Syst. Appl. Microbiol., vol. 4, no. 3, 1983, doi: 10.1016/S0723-2020(83)80017-4. [53] Y. Wang, Y. Zhang, J. Wang, and L. Meng, “Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria,” Biomass and Bioenergy, vol. 33, no. 5, 2009, doi: 10.1016/j.biombioe.2009.01.007. [54] G. Strazzera, F. Battista, N. H. Garcia, N. Frison, and D. Bolzonella, “Volatile fatty acids production from food wastes for biorefinery platforms: A review,” J. Environ. Manage., vol. 226, no. August, pp. 278–288, 2018, doi: 10.1016/j.jenvman.2018.08.039. [55] J. De Vrieze, T. Hennebel, N. Boon, and W. Verstraete, “Methanosarcina: The rediscovered methanogen for heavy duty biomethanation,” Bioresource Technology, vol. 112. 2012, doi: 10.1016/j.biortech.2012.02.079. [56] M. A. Richards, T. J. Lie, J. Zhang, S. W. Ragsdale, J. A. Leigh, and N. D. Price, “Exploring hydrogenotrophic methanogenesis: A genome scale metabolic reconstruction of Methanococcus maripaludis,” J. Bacteriol., vol. 198, no. 24, 2016, doi: 10.1128/JB.00571-16. [57] H. Singh, S. Tomar, K. A. Qureshi, M. Jaremko, and P. K. Rai, “Recent Advances in Biomass Pretreatment Technologies for Biohydrogen Production,” Energies, vol. 15, no. 3. 2022, doi: 10.3390/en15030999. [58] J. P. Delgenes, V. Penaud, and R. Moletta, “Pretreatments for the Enhancement of Anaerobic Digestion of Solid Wastes,” ChemInform, vol. 34, no. 13, 2003, doi: 10.1002/chin.200313271. [59] A. M. Buswell and H. F. Mueller, “Mechanism of Methane Fermentation,” Ind. Eng. Chem., vol. 44, no. 3, 1952, doi: 10.1021/ie50507a033. [60] N. H. Heo, S. C. Park, and H. Kang, “Effects of mixture ratio and hydraulic retention time on single-stage anaerobic co-digestion of food waste and waste activated sludge,” in Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2004, vol. 39, no. 7, doi: 10.1081/ESE-120037874. [61] J. K. Kim, B. R. Oh, Y. N. Chun, and S. W. Kim, “Effects of temperature and hydraulic retention time on anaerobic digestion of food waste,” J. Biosci. Bioeng., vol. 102, no. 4, 2006, doi: 10.1263/jbb.102.328. [62] I. M. Nasir, T. I. M. Ghazi, and R. Omar, “Production of biogas from solid organic wastes through anaerobic digestion: A review,” Applied Microbiology and Biotechnology, vol. 95, no. 2. 2012, doi: 10.1007/s00253-012-4152-7. [63] V. N. Gunaseelan, “Biochemical methane potential of fruits and vegetable solid waste feedstocks,” Biomass and Bioenergy, vol. 26, no. 4, 2004, doi: 73 10.1016/j.biombioe.2003.08.006. [64] A. M. Viturtia, J. Mata-Alvarez, F. Cecchi, and G. Fazzini, “Two-phase anaerobic digestion of a mixture of fruit and vegetable wastes,” Biol. Wastes, vol. 29, no. 3, 1989, doi: 10.1016/0269-7483(89)90130-4. [65] C. F. Chu, Y. Y. Li, K. Q. Xu, Y. Ebie, Y. Inamori, and H. N. Kong, “A pH- and temperature-phased two-stage process for hydrogen and methane production from food waste,” Int. J. Hydrogen Energy, vol. 33, no. 18, 2008, doi: 10.1016/j.ijhydene.2008.06.060. [66] J. Massanet-Nicolau, R. Dinsdale, A. Guwy, and G. Shipley, “Use of real time gas production data for more accurate comparison of continuous single-stage and two-stage fermentation,” Bioresour. Technol., vol. 129, 2013, doi: 10.1016/j.biortech.2012.11.102. [67] J. P. Lee, J. S. Lee, and S. C. Park, “Two-Phase Methanization of Food Wastes in Pilot Scale,” Appl. Biochem. Biotechnol., vol. 79, no. 1–3, 1999, doi: 10.1385/abab:79:1-3:585. [68] N. Nagao et al., “Maximum organic loading rate for the single-stage wet anaerobic digestion of food waste,” Bioresour. Technol., vol. 118, 2012, doi: 10.1016/j.biortech.2012.05.045. [69] D. Almeida Streitwieser, “Comparison of the anaerobic digestion at the mesophilic and thermophilic temperature regime of organic wastes from the agribusiness,” Bioresour. Technol., vol. 241, 2017, doi: 10.1016/j.biortech.2017.06.006. [70] B. Pap et al., “Temperature-dependent transformation of biogas-producing microbial communities points to the increased importance of hydrogenotrophic methanogenesis under thermophilic operation,” Bioresour. Technol., vol. 177, 2015, doi: 10.1016/j.biortech.2014.11.021. [71] B. K. Ahring, A. A. Ibrahim, and Z. Mladenovska, “Effect of temperature increase from 55 to 65°C on performance and microbial population dynamics of an anaerobic reactor treating cattle manure,” Water Res., vol. 35, no. 10, 2001, doi: 10.1016/S0043-1354(00)00526-1. [72] A. Boušková, M. Dohányos, J. E. Schmidt, and I. Angelidaki, “Strategies for changing temperature from mesophilic to thermophilic conditions in anaerobic CSTR reactors treating sewage sludge,” Water Res., vol. 39, no. 8, 2005, doi: 10.1016/j.watres.2004.12.042. [73] A. M. F. Hamzah, J. Jahim, P. M. Abdul, and A. J. Asis, “Investigation of Temperature E ff ect on Start-Up Operation from Anaerobic Digestion of Acidified,” Energies, 2019. [74] M. S. Kim, D. H. Kim, and Y. M. Yun, “Effect of operation temperature on anaerobic digestion of food waste: Performance and microbial analysis,” Fuel, vol. 209, 2017, doi: 10.1016/j.fuel.2017.08.033. [75] S. T. Noxolo, M. Edison, and H. B. Tesfagiorgis, “Effect of Temperature and pH on The Anaerobic Digestion of Grass Silage,” Proc. 6th Int. Conf. Green Technol. Renew. Energy Environ. Eng. Cape Town, South Africa, no. November, 2014. 74 [76] M. Murto, L. Björnsson, and B. Mattiasson, “Impact of food industrial waste on anaerobic co-digestion of sewage sludge and pig manure,” J. Environ. Manage., vol. 70, no. 2, 2004, doi: 10.1016/j.jenvman.2003.11.001. [77] S. Önen, A. Nsair, and K. Kuchta, “Innovative operational strategies for biogas plant including temperature and stirring management,” Waste Manag. Res., vol. 37, no. 3, 2019, doi: 10.1177/0734242X18816800. [78] K. Braber, “Anaerobic digestion of municipal solid waste: A modern waste disposal option on the verge of breakthrough,” Biomass and Bioenergy, vol. 9, no. 1–5, 1995, doi: 10.1016/0961-9534(95)00103-4. [79] C. He, Y. Mu, X. Liu, Z. Yan, and Z. Yue, Biogas: Fundamentals, Process and Operation. 2019. [80] K. Boe, Online monitoring and control of the biogas process. 2006. [81] C. Wang, F. Hong, Y. Lu, X. Li, and H. Liu, “Improved biogas production and biodegradation of oilseed rape straw by using kitchen waste and duck droppings as co-substrates in two-phase anaerobic digestion,” PLoS One, vol. 12, no. 8, 2017, doi: 10.1371/journal.pone.0182361. [82] X. Wang, G. Yang, Y. Feng, G. Ren, and X. Han, “Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw,” Bioresour. Technol., vol. 120, 2012, doi: 10.1016/j.biortech.2012.06.058. [83] F. J. Callaghan, D. A. J. Wase, K. Thayanithy, and C. F. Forster, “Continuous co-digestion of cattle slurry with fruit and vegetable wastes and chicken manure,” Biomass and Bioenergy, vol. 22, no. 1, 2002, doi: 10.1016/S0961-9534(01)00057-5. [84] X. Wang, X. Lu, F. Li, and G. Yang, “Effects of temperature and Carbon-Nitrogen (C/N) ratio on the performance of anaerobic co-digestion of dairy manure, chicken manure and rice straw: Focusing on ammonia inhibition,” PLoS One, vol. 9, no. 5, 2014, doi: 10.1371/journal.pone.0097265. [85] S. Riya, K. Suzuki, A. Terada, M. Hosomi, and S. Zhou, “Influence of C/N Ratio on Performance and Microbial Community Structure of Dry-Thermophilic Anaerobic Co-Digestion of Swine Manure and Rice Straw,” J. Med. Bioeng., vol. 5, no. 1, 2016, doi: 10.12720/jomb.5.1.11-14. [86] Z. Zhang, G. Zhang, W. Li, C. Li, and G. Xu, “Enhanced biogas production from sorghum stem by co-digestion with cow manure,” Int. J. Hydrogen Energy, vol. 41, no. 21, 2016, doi: 10.1016/j.ijhydene.2016.02.042. [87] K. Karim, R. Hoffmann, T. Klasson, and M. H. Al-Dahhan, “Anaerobic digestion of animal waste: Waste strength versus impact of mixing,” Bioresour. Technol., vol. 96, no. 16, 2005, doi: 10.1016/j.biortech.2005.01.020. 75 [88] Y. Yuan et al., “A combined process for efficient biomethane production from corn straw and cattle manure: Optimizing C/N ratio of mixed hydrolysates,” BioResources, vol. 14, no. 1, 2019, doi: 10.15376/biores.14.1.1347-1363. [89] M. Mönch-Tegeder, A. Lemmer, H. Oechsner, and T. Jungbluth, “Investigation of the methane potential of horse manure,” Agric. Eng. Int. CIGR J., vol. 15, no. 2, pp. 161–172, 2013. [90] J. Jiang et al., “Effect of Organic Loading Rate and Temperature on the Anaerobic Digestion of Municipal Solid Waste: Process Performance and Energy Recovery,” Front. Energy Res., vol. 8, 2020, doi: 10.3389/fenrg.2020.00089. [91] Z. Zuo, S. Wu, W. Zhang, and R. Dong, “Effects of organic loading rate and effluent recirculation on the performance of two-stage anaerobic digestion of vegetable waste,” Bioresour. Technol., vol. 146, 2013, doi: 10.1016/j.biortech.2013.07.128. [92] H. I. Owamah and O. C. Izinyon, “The effect of organic loading rates (OLRs) on the performances of food wastes and maize husks anaerobic co-digestion in continuous mode,” Sustain. Energy Technol. Assessments, vol. 11, 2015, doi: 10.1016/j.seta.2015.06.002. [93] C. Liu, W. Wang, N. Anwar, Z. Ma, G. Liu, and R. Zhang, “Effect of Organic Loading Rate on Anaerobic Digestion of Food Waste under Mesophilic and Thermophilic Conditions,” Energy and Fuels, vol. 31, no. 3, 2017, doi: 10.1021/acs.energyfuels.7b00018. [94] A. Haryanto, S. Triyono, and N. H. Wicaksono, “Effect of hydraulic retention time on biogas production from cow dung in a semi continuous anaerobic digester,” Int. J. Renew. Energy Dev., vol. 7, no. 2, 2018, doi: 10.14710/ijred.7.2.93-100. [95] N. Duan, B. Dong, B. Wu, and X. Dai, “High-solid anaerobic digestion of sewage sludge under mesophilic conditions: Feasibility study,” Bioresour. Technol., vol. 104, 2012, doi: 10.1016/j.biortech.2011.10.090. [96] M. A. Dareioti and M. Kornaros, “Effect of hydraulic retention time (HRT) on the anaerobic co-digestion of agro-industrial wastes in a two-stage CSTR system,” Bioresour. Technol., vol. 167, 2014, doi: 10.1016/j.biortech.2014.06.045. [97] X. S. Shi et al., “Effect of Hydraulic Retention Time on Anaerobic Digestion of Wheat Straw in the Semicontinuous Continuous Stirred-Tank Reactors,” Biomed Res. Int., vol. 2017, 2017, doi: 10.1155/2017/2457805. [98] T. Schmidt et al., “Effects of the reduction of the hydraulic retention time to 1.5 days at constant organic loading in CSTR, ASBR, and fixed-bed reactors - Performance and methanogenic community composition,” Biomass and Bioenergy, vol. 69, 2014, doi: 10.1016/j.biombioe.2014.07.021. [99] L. Wiedemann, F. Conti, T. Janus, M. Sonnleitner, W. Zörner, and M. Goldbrunner, “Mixing in Biogas Digesters and Development of an Artificial Substrate for Laboratory-Scale Mixing Optimization,” Chem. Eng. Technol., vol. 40, no. 2, 2017, doi: 76 10.1002/ceat.201600194. [100] A. Lemmer, H. J. Naegele, and J. Sondermann, “How efficient are agitators in biogas digesters? Determination of the efficiency of submersible motor mixers and incline agitators by measuring nutrient distribution in full-scale agricultural biogas digesters,” Energies, vol. 6, no. 12, 2013, doi: 10.3390/en6126255. [101] K. Karim, K. T. Klasson, R. Hoffmann, S. R. Drescher, D. W. DePaoli, and M. H. Al-Dahhan, “Anaerobic digestion of animal waste: Effect of mixing,” Bioresour. Technol., vol. 96, no. 14, 2005, doi: 10.1016/j.biortech.2004.12.021. [102] M. S. H. and M. M. A. R Nandi, C K Saha, “Effect of mixing on biogas production from cowdung,” Researchgate.Net, vol. 10, no. 02, 2017. [103] Y. Chen, J. J. Cheng, and K. S. Creamer, “Inhibition of anaerobic digestion process: A review,” Bioresource Technology, vol. 99, no. 10. 2008, doi: 10.1016/j.biortech.2007.01.057. [104] M. Czatzkowska, M. Harnisz, E. Korzeniewska, and I. Koniuszewska, “Inhibitors of the methane fermentation process with particular emphasis on the microbiological aspect: A review,” Energy Sci. Eng., vol. 8, no. 5, pp. 1880–1897, 2020, doi: 10.1002/ese3.609. [105] P. E. Khoonsari et al., “Page 1 of ك ل ا م ل ا د م ح ن ب د ل ا خ : ر ی ر ح ت ل ا س ی ئ ر ى ل و لا ا ت ا 3 ی ل ح م د و م ح م ل لا ج ر د ا ن / س د ن ھ م ل ا Page 1 of 3 ت ا ر ش ح ل ا ة ح ف ا ك م ل م ی ن ل ا ة ر ج ش ر ا م ث ,” Chem. Rev., vol. 118, no. 6, pp. 1156–1162, 2019, [Online]. Available: http://dx.doi.org/10.1038/nature13800. [106] S. Jouanneau et al., “Methods for assessing biochemical oxygen demand (BOD): A review,” Water Research, vol. 49, no. 1. 2014, doi: 10.1016/j.watres.2013.10.066. [107] M. Qi, Y. Han, Z. Zhao, and Y. Li, “Integrated determination of chemical oxygen demand and biochemical oxygen demand,” Polish J. Environ. Stud., vol. 30, no. 2, 2021, doi: 10.15244/pjoes/122439. [108] L. M. Al-Rosyid and S. Mangkoedihardjo, “Relationship between BOD/cod ratio and octanol/water partition coefficient for glucose, lactose, sucrose, formaldehyde, acetic acid and oxalic acid,” Int. J. Civ. Eng. Technol., vol. 10, no. 1, 2019. [109] J. Yi, B. Dong, J. Jin, and X. Dai, “Effect of increasing total solids contents on anaerobic digestion of food waste under mesophilic conditions: Performance and microbial characteristics analysis,” PLoS One, vol. 9, no. 7, 2014, doi: 10.1371/journal.pone.0102548. [110] EPA, “Method 1684: Total, Fixed, and Volatile Solids in Water, Solids, and Biosolids,” U. S. Environ. Prot. Agency, vol. EPA-821-R-, no. January, 2001. [111] APHA, “Standard Methods for the Examination of Water and Wastewater,” Stand. Methods, 2005, doi: ISBN 9780875532356. [112] R. Mei, T. Narihiro, M. K. Nobu, K. Kuroda, and W. T. Liu, “Evaluating digestion 77 efficiency in full-scale anaerobic digesters by identifying active microbial populations through the lens of microbial activity,” Sci. Rep., vol. 6, 2016, doi: 10.1038/srep34090. [113] J. Ariunbaatar, A. Panico, G. Esposito, F. Pirozzi, and P. N. L. Lens, “Pretreatment methods to enhance anaerobic digestion of organic solid waste,” Applied Energy, vol. 123. 2014, doi: 10.1016/j.apenergy.2014.02.035. [114] C. Wan and Y. Li, “Fungal pretreatment of lignocellulosic biomass,” Biotechnology Advances, vol. 30, no. 6. 2012, doi: 10.1016/j.biotechadv.2012.03.003. [115] D. Kumar and G. S. Murthy, “Impact of pretreatment and downstream processing technologies on economics and energy in cellulosic ethanol production,” Biotechnol. Biofuels, vol. 4, 2011, doi: 10.1186/1754-6834-4-27. [116] J. Kim et al., “Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge,” J. Biosci. Bioeng., vol. 95, no. 3, 2003, doi: 10.1263/jbb.95.271. [117] J. S. Kim, Y. Y. Lee, and T. H. Kim, “A review on alkaline pretreatment technology for bioconversion of lignocellulosic biomass,” Bioresource Technology, vol. 199. 2016, doi: 10.1016/j.biortech.2015.08.085. [118] H. Li, C. Li, W. Liu, and S. Zou, “Optimized alkaline pretreatment of sludge before anaerobic digestion,” Bioresour. Technol., vol. 123, 2012, doi: 10.1016/j.biortech.2012.08.017. [119] I. W. Nah, Y. W. Kang, K. Y. Hwang, and W. K. Song, “Mechanical pretreatment of waste activated sludge for anaerobic digestion process,” Water Res., vol. 34, no. 8, 2000, doi: 10.1016/S0043-1354(99)00361-9. [120] X. Li et al., “Anaerobic digestion using ultrasound as pretreatment approach: Changes in waste activated sludge, anaerobic digestion performances and digestive microbial populations,” Biochem. Eng. J., vol. 139, 2018, doi: 10.1016/j.bej.2017.11.009. [121] M. Carlsson, When and why is pre-treatment of substrates for anaerobic digestion useful? 2015. [122] I. V. Skiadas, H. N. Gavala, J. Lu, and B. K. Ahring, “Thermal pre-treatment of primary and secondary sludge at 701 °C prior to anaerobic digestion,” Water Sci. Technol., vol. 52, no. 1–2, 2005, doi: 10.2166/wst.2005.0512. [123] I. Ferrer, S. Ponsá, F. Vázquez, and X. Font, “Increasing biogas production by thermal (70 °C) sludge pre-treatment prior to thermophilic anaerobic digestion,” Biochem. Eng. J., vol. 42, no. 2, 2008, doi: 10.1016/j.bej.2008.06.020. [124] W. P. F. Barber, “Thermal hydrolysis for sewage treatment: A critical review,” Water Research, vol. 104. 2016, doi: 10.1016/j.watres.2016.07.069. [125] R. Rajagopal, D. I. Massé, and G. Singh, “A critical review on inhibition of anaerobic digestion process by excess ammonia,” Bioresource Technology, vol. 143. 2013, doi: |
en_US |