dc.identifier.citation |
[1] M. Chakraborty, “A Computational Study on two horizontally close sequential airfoils to determine conjoined pressure distribution and aerodynamic influences on each other,” no. May, 2015, doi: 10.13140/RG.2.1.5041.4562. [2] A. S. Rangwala, Turbo-machinery Dynamics : Design and Operation. [3] G. M. L. Murari P. Singh, Blade Design and Analysis for Steam Turbines. [4] R. R. Kumar and K. M. Pandey, “Static structural and modal analysis of gas turbine blade,” IOP Conf. Ser. Mater. Sci. Eng., vol. 225, no. 1, 2017, doi: 10.1088/1757-899X/225/1/012102. [5] K. A. R. Ismail, T. Canale, and F. A. M. Lino, “Effects of the Airfoil Section, Chord and Twist Angle Distributions on the Starting Torque of Small Horizontal Axis Wind Turbines,” J. Energy Resour. Technol., vol. 144, no. 5, Jul. 2021, doi: 10.1115/1.4051759. [6] A. Tahir, M. Elgabaili, Z. Rajab, N. Buaossa, A. Khalil, and F. Mohamed, “Optimization of small wind turbine blades using improved blade element momentum theory,” Wind Eng., vol. 43, no. 3, pp. 299–310, 2019, doi: 10.1177/0309524X18791395. [7] W. L. Htwe, H. Htay Win, and N. A. San, “Design And Thermal Analysis Of Gas Turbine Blade 62,” Int. J. Mech. Prod. Eng., no. 3, pp. 2320–2092, 2015. [8] S. O. Afolabi, B. I. Oladapo, C. O. Ijagbemi, A. O. M. Adeoye, and J. F. Kayode, “Design and finite element analysis of a fatigue life prediction for safe and economical machine shaft,” J. Mater. Res. Technol., vol. 8, no. 1, pp. 105–111, 2019, doi: 10.1016/j.jmrt.2017.10.007. [9] J. P. Thomas and R. Pigott, “Turbine Blade Design and Analysis.,” no. November, pp. 105–118, 1984. [10] H. P. Singh, A. Rawat, A. R. Manral, and P. Kumar, “Computational analysis of a gas turbine blade with different materials,” Mater. Today Proc., vol. 44, no. xxxx, pp. 63–69, 2021, doi: 10.1016/j.matpr.2020.06.486. [11] P. Brandão, V. Infante, and A. M. Deus, “Thermo-mechanical modeling of a high pressure turbine blade of an airplane gas turbine engine,” Procedia Struct. Integr., vol. 1, pp. 189–196, 2016, doi: 10.1016/j.prostr.2016.02.026. [12] G. Chintala and P. Gudimetla, “Optimum material evaluation for gas turbine blade using Reverse Engineering (RE) and FEA,” Procedia Eng., 40 | P a g e vol. 97, pp. 1332–1340, 2014, doi: 10.1016/j.proeng.2014.12.413. [13] G. Urquiza et al., “Failure analysis of a hydraulic Kaplan turbine shaft,” Eng. Fail. Anal., vol. 41, pp. 108–117, 2014, doi: 10.1016/j.engfailanal.2014.02.009. [14] R. S. Mohan, A. Sarkar, and A. S. Sekhar, “Vibration analysis of a steam turbine blade,” INTERNOISE 2014 - 43rd Int. Congr. Noise Control Eng. Improv. World Through Noise Control, pp. 1–10, 2014. [15] L. Moroz and L. G. Romanenko, “Vibration Analysis of Low Pressure Stages of Large Steam Turbines with ANSYS,” Main, pp. 3–8. [16] B. Deepanraj, P. Lawrence, and G. Sankaranarayanan, “Theoretical Analysis of Gas Turbine Blade By,” vol. 9, no. 9, pp. 29–33, 2011. [17] O. E. Efe-Ononeme, A. E. Ikpe, and G. O. Arravve, “Modal Analysıs of Conventıonal Gas Turbıne Blade Materıals (Udımet 500 and In738) for Industrıal Applıcatıons,” J. Enggneerrng Technol. Applled Sccences, vol. 3, no. 2, pp. 119–133, 2018. [18] C. Liu, H. He, S. Zhang, and R. U. Wolfgang, “Research on the Influence of Turbine Blade Fillet Geometry by Strength and Modal Analysis,” 2018, [Online]. Available: https://zenodo.org/record/1344976 [19] M. Janeček et al., “The very high cycle fatigue behaviour of Ti-6Al-4V alloy,” Acta Phys. Pol. A, vol. 128, no. 4, pp. 497–502, 2015, doi: 10.12693/APhysPolA.128.497. 41 | P a g e 4.5 APPENDIX |
en_US |