| Login
dc.contributor.author | Rashid, Abir | |
dc.contributor.author | Nakib, Taher Hasan | |
dc.date.accessioned | 2023-03-13T07:55:09Z | |
dc.date.available | 2023-03-13T07:55:09Z | |
dc.date.issued | 2022-05-30 | |
dc.identifier.citation | [1] “Ocean Thermal Energy Conversion using the Oceans Energy.” https://www.alternativeenergy- tutorials.com/geothermal-energy/ocean-thermal-energy-conversion.html (accessed Mar. 05, 2022). [2] Lockheed Martin Mission Systems and Sensors (M2), “(PDF) Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012.” https://www.researchgate.net/publication/268506159_Ocean_Thermal_Extractable_Energ y_Visualization-_Final_Technical_Report_on_Award_DE-EE0002664_October_28_2012 (accessed Mar. 05, 2022). [3] A. S. Hamedi and S. Sadeghzadeh, “Conceptual design of a 5 MW OTEC power plant in the Oman Sea,” https://doi.org/10.1080/20464177.2017.1320839, vol. 16, no. 2, pp. 94– 102, May 2017, doi: 10.1080/20464177.2017.1320839. [4] W. Suparta and W. Suparta, “Marine Heat as a Renewable Energy Source,” WIDYAKALA J. Pembang. JAYA Univ., vol. 7, no. 1, pp. 37–41, Mar. 2020, doi: 10.36262/widyakala.v7i1.278. [5] H. Kobayashi, S. Jitsuhara, ] H. U.-, A. http://www. nmri. go. jp, and undefined 2001, “The present status and features of OTEC and recent aspects of thermal energy conversion technologies,” nmri.go.jp, Accessed: Mar. 06, 2022. [Online]. Available: https://www.nmri.go.jp/oldpages/main/cooperation/ujnr/24ujnr_paper_jpn/Kobayashi.pdf. [6] “Ocean Thermal Energy Conversion - Makai Ocean Engineering.” https://www.makai.com/ocean-thermal-energy-conversion/ (accessed Mar. 06, 2022). [7] “BP.Statistical review of world energy 2012,” BP, 2012. [Online]. - Google Search.” https://www.google.com/search?q=BP.Statistical+review+of+world+energy+2012%2C”+ BP%2C+2012.+%5BOnline%5D.&oq=BP.Statistical+review+of+world+energy+2012%2 C”+BP%2C+2012.+%5BOnline%5D.&aqs=chrome..69i57.655j0j7&sourceid=chrome&ie 75 =UTF-8 (accessed Mar. 06, 2022). [8] M. T. Islam, S. A. Shahir, T. M. I. Uddin, and A. Z. A. Saifullah, “Current energy scenario and future prospect of renewable energy in Bangladesh,” Renew. Sustain. Energy Rev., vol. 39, pp. 1074–1088, 2014, doi: 10.1016/J.RSER.2014.07.149. [9] N. K. Das, J. Chakrabartty, M. Dey, A. K. S. Gupta, and M. A. Matin, “Present energy scenario and future energy mix of Bangladesh,” Energy Strateg. Rev., vol. 32, p. 100576, Nov. 2020, doi: 10.1016/J.ESR.2020.100576. [10] F. Ahmed, A. Q. Al Amin, M. Hasanuzzaman, and R. Saidur, “Alternative energy resources in Bangladesh and future prospect,” Renew. Sustain. Energy Rev., vol. 25, pp. 698–707, 2013, doi: 10.1016/J.RSER.2013.05.008. [11] “Prospect and trend of renewable energy and its technology towards climate change mitigation and sustainable development in Bangladesh.” https://www.cabdirect.org/cabdirect/abstract/20123370241 (accessed May 06, 2022). [12] “Bangladesh | Data.” https://data.worldbank.org/country/BD (accessed Mar. 06, 2022). [13] “Bangladesh Power Development Board-Government of the People\’s Republic of Bangladesh,” 5a3f-2fdb-e75f-3cabe66b-f70d-5408-cbc9-f489-c31c -. http://www.bpdb.gov.bd/bpdb_new/index.php/site/page/5a3f-2fdb-e75f-3cabe66b-f70d- 5408-cbc9-f489-c31c (accessed Mar. 06, 2022). [14] “Bangladesh Oil, Gas & Mineral Corporation (Petrobangla).” http://www.petrobangla.org.bd/ (accessed Mar. 06, 2022). [15] “Electricity Scenario in Bangladesh,” Unnayan Onneshan, Energy security: trends and challenges, Bangladesh Economic Update 5 (11) , 2014. www.unnayan.org (accessed Mar. 06, 2022). [16] H. Gunatilake and D. Roland-Holst, “Energy Policy Options for Sustainable Development in Bangladesh Energy Policy Options for Sustainable Development in Bangladesheconomics Printed on recycled paper Printed in the Philippines,” 2013, Accessed: Mar. 06, 2022. [Online]. Available: www.adb.org/. 76 [17] S. Islam Sharif, M. Anisur Rahman Anik, M. Al-Amin, and M. Abu Bakr Siddique, “The Prospect of Renewable Energy Resources in Bangladesh: A Study to Achieve the National Power Demand,” Energy and Power, vol. 8, no. 1, pp. 1–6, Jan. 2018, doi: 10.5923/J.EP.20180801.01. [18] D. Datta, S. Chowdhury, A. Kumar Saha, and M. M. Rahman, “Tilted And Horizontal Solar Radiation For 6 Zones In Bangladesh,” Int. J. Sci. Technol. Res., vol. 3, no. 2, 2014, Accessed: Mar. 06, 2022. [Online]. Available: www.ijstr.org. [19] “Power-System-Master-Plan-2016 -Power Division, People’s Republic of Bangladesh.” http://www.powerdivision.gov.bd/site/page/ f68eb32d-cc0b-483e-b047- 13eb81da6820/Power-System-Master-Plan-2016 (accessed Mar. 05, 2022). [20] A. Fudholi et al., “Review of solar photovoltaic/thermal (PV/T) air collector,” Int. J. Electr. Comput. Eng. Int. J. Electr. Comput. Eng. Int. J. Electr. Comput. Eng., vol. 9, no. 1, pp. 126–133, 2019, doi: 10.11591/ijece.v9i1.pp126-133. [21] “Bangladesh 2013.” https://wwwpub. iaea.org/mtcd/publications/pdf/cnpp2013_cd/countryprofiles/Bangladesh/Bangladesh. htm (accessed Mar. 06, 2022). [22] “Sustainable and Renewable Energy Development Authority (SREDA)-Power Division, Ministry of Power, Energy & Mineral Resources.” http://www.sreda.gov.bd/ (accessed Mar. 06, 2022). [23] H. Sciences, “済無No Title No Title No Title,” vol. 4, no. 1, pp. 1–23, 2016. [24] P. K. Halder, N. Paul, and M. R. A. Beg, “Assessment of biomass energy resources and related technologies practice in Bangladesh,” Renew. Sustain. Energy Rev., vol. 39, pp. 444–460, 2014, doi: 10.1016/J.RSER.2014.07.071. [25] A. S. N. Huda, S. Mekhilef, and A. Ahsan, “Biomass energy in Bangladesh: Current status and prospects,” Renew. Sustain. Energy Rev., vol. 30, pp. 504–517, Feb. 2014, doi: 10.1016/J.RSER.2013.10.028. [26] A. Rahman, A. Mamun, N. Afrooz, S. Howlader, and A. B. M. Qudrot-E-Khuda, “Rice Processing Industry of Bangladesh Emerging Credit Rating Limited Rice Processing 77 Industry of Bangladesh,” 2017. [27] S. Yasmin and I. Rahman, “A Review of Solid Waste Management Practice in Dhaka City, Bangladesh,” http://www.sciencepublishinggroup.com, vol. 5, no. 2, p. 19, 2017, doi: 10.11648/J.IJEPP.20170502.11. [28] K. M. N. Islam, “Municipal Solid Waste to Energy Generation in Bangladesh: Possible Scenarios to Generate Renewable Electricity in Dhaka and Chittagong City,” J. Renew. Energy, vol. 2016, pp. 1–16, 2016, doi: 10.1155/2016/1712370. [29] “Power Grid Company of Bangladesh Limited. (www.pgcb.org.bd/PGCB) [Accessedon: March 11, 2020].” http://pgcb.gov.bd/ (accessed Mar. 06, 2022). [30] “Energy: The Next Fifty Years, Organization for Economic Co-operation andDevelopment, OECD Publications Service, France, 1999.” [31] P. Mazumder, M. H. Jamil, C. K. Das, and M. A. Matin, “Hybrid energy optimization: An ultimate solution to the power crisis of St. Martin Island, Bangladesh,” 2014 9th Int. Forum Strateg. Technol. IFOST 2014, pp. 363–368, Dec. 2014, doi: 10.1109/IFOST.2014.6991141. [32] “Rainfall - Banglapedia.” https://en.banglapedia.org/index.php/Rainfall (accessed Mar. 06, 2022). [33] E. P. Chassignet et al., “The HYCOM (HYbrid Coordinate Ocean Model) data assimilative system,” J. Mar. Syst., vol. 65, no. 1–4, pp. 60–83, Mar. 2007, doi: 10.1016/J.JMARSYS.2005.09.016. [34] M. N. I. Sarkar and A. I. Sifat, “Global solar radiation estimation from commonly available meteorological data for Bangladesh,” Renewables Wind. Water, Sol. 2016 31, vol. 3, no. 1, pp. 1–14, Feb. 2016, doi: 10.1186/S40807-016-0027-3. [35] K. M. Rabbi, I. Nandi, A. S. Saleh, F. Faisal, and S. Mojumder, “Prediction of solar irradiation in Bangladesh using artificial neural network (ANN) and data mapping using GIS technology,” ICDRET 2016 - 4th Int. Conf. Dev. Renew. Energy Technol., Feb. 2016, doi: 10.1109/ICDRET.2016.7421482. 78 [36] S. Podder and M. M. Islam, “Solar Radiation Estimation from the Measurement of Sunshine Hours over Southern Coastal Region, Bangladesh,” http://www.sciencepublishinggroup.com, vol. 4, no. 2, p. 47, Apr. 2015, doi: 10.11648/J.IJRSE.20150402.14. [37] A. Schweitzer et al., “ULTIMATE TROUGH® - Fabrication, erection and commissioning of the world’s largest parabolic trough collector,” Energy Procedia, vol. 49, pp. 1848– 1857, 2014, doi: 10.1016/j.egypro.2014.03.196. [38] E. P. Chassignet, “Pubs.GISS: Chassignet et al. 2009: US GODAE: Global Ocean Prediction with the HYbrid Coordinate Ocean...” https://pubs.giss.nasa.gov/abs/ch04900a.html (accessed Mar. 21, 2022). [39] E. Banguero, H. D. Agudelo Arias, A. J. Aristizabal, and D. H. Ospina Baragán, “Renewable microgrid operational results and economic evaluation using RETScreenTM,” Int. J. Electr. Comput. Eng., vol. 9, no. 2, p. 723, Apr. 2019, doi: 10.11591/IJECE.V9I2.PP723-731. [40] A. K. Biswas, B. Sajjakulnukit, and P. Rakkwamsuk, “Subsidy Policy Instruments for Rapid Growth of Photovoltaic Electricity Generation in Bangladesh,” Energy Procedia, vol. 52, pp. 68–76, Jan. 2014, doi: 10.1016/J.EGYPRO.2014.07.055. [41] M. F. Hossain, S. Hossain, and M. J. Uddin, “Renewable energy: Prospects and trends in Bangladesh,” Renew. Sustain. Energy Rev., vol. 70, pp. 44–49, Apr. 2017, doi: 10.1016/J.RSER.2016.11.197. [42] K. Kibria, Talha Rahman Roman, and Muhammad Alam, “WIND ENERGY IN BANGLADESH: PROSPECTS AND UTILIZATION INITIATIVES,” 2004. [43] R. Magesh, “OTEC technology -- a world of clean energy and water (Journal Article) | ETDEWEB.” https://www.osti.gov/etdeweb/biblio/21460745 (accessed Mar. 06, 2022). [44] New Atlas, “World’s largest OTEC power plant planned for China.” https://newatlas.com/otec-plant-lockheed-martin-reignwood-china/27164/ (accessed Mar. 11, 2022). [45] R. Adiputra, T. Utsunomiya, J. Koto, T. Yasunaga, and Y. Ikegami, “Preliminary design 79 of a 100 MW-net ocean thermal energy conversion (OTEC) power plant study case: Mentawai island, Indonesia,” J. Mar. Sci. Technol., vol. 25, no. 1, pp. 48–68, Mar. 2020, doi: 10.1007/S00773-019-00630-7/FIGURES/22. [46] M. A. Abbas, N. Hasan, and S. M. R. Hasan, “A feasibility study on CSP technology to comply with Bangladesh to its power system competency,” Proc. 3rd 2021 Int. Youth Conf. Radio Electron. Electr. Power Eng. REEPE 2021, 2021, doi: 10.1109/REEPE51337.2021.9388049. [47] L. Rauchenstein, “Global distribution of ocean thermal energy conversion (OTEC) resources and applicability in U.S. waters near Florida - ProQuest,” Accessed: Mar. 06, 2022. [Online]. Available: https://www.proquest.com/openview/e68f01daf25012b2414543acea65b42a/1?pqorigsite= gscholar&cbl=18750. [48] C. C. K. Liu, “Ocean thermal energy conversion and open ocean mariculture: The prospect of Mainland-Taiwan collaborative research and development,” Sustain. Environ. Res., vol. 28, no. 6, pp. 267–273, Nov. 2018, doi: 10.1016/J.SERJ.2018.06.002. [49] T. Mitsui, F. Ito, Y. Seya, and Y. Nakamoto, “Outline of the 100 kW OTEC pilot plant in the republic of nauru,” IEEE Trans. Power Appar. Syst., vol. PAS-102, no. 9, pp. 3167– 3171, 1983, doi: 10.1109/TPAS.1983.318124. [50] H. Uehara, C. O. Dilao, and T. Nakaoka, “Conceptual design of ocean thermal energy conversion (OTEC) power plants in the Philippines,” Sol. Energy, vol. 41, no. 5, pp. 431– 441, Jan. 1988, doi: 10.1016/0038-092X(88)90017-5. [51] G. C. Nihous, “A preliminary assessment of ocean thermal energy conversion resources,” J. Energy Resour. Technol. Trans. ASME, vol. 129, no. 1, pp. 10–17, Mar. 2007, doi: 10.1115/1.2424965. [52] Ǵrard C. Nihous, “Mapping available Ocean Thermal Energy Conversion resources around the main Hawaiian Islands with state-of-the-art tools,” J. Renew. Sustain. Energy, vol. 2, no. 4, Jul. 2010, doi: 10.1063/1.3463051. [53] K. Rajagopalan and G. C. Nihous, “Estimates of global Ocean Thermal Energy 80 Conversion (OTEC) resources using an ocean general circulation model,” Renew. Energy, vol. 50, pp. 532–540, Feb. 2013, doi: 10.1016/J.RENENE.2012.07.014. [54] A. Devis-Morales, R. A. Montoya-Sánchez, A. F. Osorio, and L. J. Otero-Díaz, “Ocean thermal energy resources in Colombia,” Renew. Energy, vol. 66, pp. 759–769, Jun. 2014, doi: 10.1016/J.RENENE.2014.01.010. [55] J. R. S. Doorga, O. Gooroochurn, B. A. Motah, V. Ramchandur, and S. Sunassee, “A novel modelling approach to the identification of optimum sites for the placement of ocean thermal energy conversion (OTEC) power plant: application to the tropical island climate of Mauritius,” Int. J. Energy Environ. Eng., vol. 9, no. 4, pp. 363–382, Dec. 2018, doi: 10.1007/S40095-018-0278-4/TABLES/5. [56] J. H. VanZwieten, L. T. Rauchenstein, and L. Lee, “An assessment of Florida’s ocean thermal energy conversion (OTEC) resource,” Renew. Sustain. Energy Rev., vol. 75, pp. 683–691, Aug. 2017, doi: 10.1016/J.RSER.2016.11.043. [57] E. P. Garduño-Ruiz et al., “Criteria for Optimal Site Selection for Ocean Thermal Energy Conversion (OTEC) Plants in Mexico,” Energies 2021, Vol. 14, Page 2121, vol. 14, no. 8, p. 2121, Apr. 2021, doi: 10.3390/EN14082121. [58] Y. Jia, G. C. Nihous, and K. J. Richards, “Effects of ocean thermal energy conversion systems on near and far field seawater properties—A case study for Hawaii,” J. Renew. Sustain. Energy, vol. 4, no. 6, p. 063104, Nov. 2012, doi: 10.1063/1.4766820. [59] S. R. Shakil, M. S. Hossain, and N. T. Rouf, “Propasal of possible OTEC sites in Bangladesh,” 2013 Int. Conf. Electr. Inf. Commun. Technol. EICT 2013, 2014, doi: 10.1109/EICT.2014.6777893. [60] M. Hassan, W. Bin Habib, T. Rupam, and H. Rupam, “Study On Electrification of Remote and Isolated Tropical Islands Using OTEC,” 2016. [61] W. H. Avery and C. Wu, “Renewable energy from the ocean: A guide to OTEC / William H. Avery and Chih Wu,” 1994. [62] L. A. Vega and P. Honolulu, “Ocean Thermal Energy Conversion Primer,” Technol. Soc. J. V, vol. 6, no. 4, pp. 25–35, 2002. 81 [63] G. C. Nihous, “An order-of-magnitude estimate of ocean thermal energy conversion resources,” J. Energy Resour. Technol. Trans. ASME, vol. 127, no. 4, pp. 328–333, Dec. 2005, doi: 10.1115/1.1949624. [64] N. Qin, X. Chen, G. Fu, J. Zhai, and X. Xue, “Precipitation and temperature trends for the Southwest China: 1960–2007,” Hydrol. Process., vol. 24, no. 25, pp. 3733–3744, Dec. 2010, doi: 10.1002/HYP.7792. [65] “World Ocean Atlas 2001.” https://www.nodc.noaa.gov/OC5/WOA01/pr_woa01.html (accessed Mar. 05, 2022). [66] W. Sturges, E. Chassignet, and T. Ezer, “Strong Mid-Depth Currents and a Deep Cyclonic Gyre in the Gulf of Mexico,” CCPO Publ., Nov. 2003, Accessed: Mar. 05, 2022. [Online]. Available: https://digitalcommons.odu.edu/ccpo_pubs/156. [67] R. Bleck, “An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates,” Ocean Model., vol. 4, no. 1, pp. 55–88, Jan. 2002, doi: 10.1016/S1463- 5003(01)00012-9. [68] R. Bleck and D. Boudra, “Wind-driven spin-up in eddy-resolving ocean models formulated in isopycnic and isobaric coordinates,” J. Geophys. Res. Ocean., vol. 91, no. C6, pp. 7611–7621, Jun. 1986, doi: 10.1029/JC091IC06P07611. [69] R. Bleck and L. T. Smith, “A wind-driven isopycnic coordinate model of the north and equatorial Atlantic Ocean: 1. Model development and supporting experiments,” J. Geophys. Res. Ocean., vol. 95, no. C3, pp. 3273–3285, Mar. 1990, doi: 10.1029/JC095IC03P03273. [70] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi: 10.1162/neco.1997.9.8.1735. [71] “HYCOM.” https://www.hycom.org/ (accessed Mar. 05, 2022). [72] R. Rew and G. Davis, “NetCDF: An Interface for Scientific Data Access,” IEEE Comput. Graph. Appl., vol. 10, no. 4, pp. 76–82, 1990, doi: 10.1109/38.56302. [73] “pandas documentation — pandas 1.4.1 documentation.” https://pandas.pydata.org/docs/ 82 (accessed Mar. 05, 2022). [74] “NumPy Documentation.” https://numpy.org/doc/ (accessed Mar. 05, 2022). [75] “Welcome to the Matplotlib Basemap Toolkit documentation — Basemap Matplotlib Toolkit 1.2.1 documentation.” https://matplotlib.org/basemap/ (accessed Mar. 05, 2022). [76] “Matplotlib documentation — Matplotlib 3.5.1 documentation.” https://matplotlib.org/3.5.1/ (accessed Mar. 05, 2022). [77] “Choropleth Maps.” https://plotly.com/python/choropleth-maps/ (accessed Mar. 05, 2022). [78] “Calculate distance and bearing between two Latitude/Longitude points using haversine formula in JavaScript.” https://www.movable-type.co.uk/scripts/latlong.html (accessed Mar. 05, 2022). [79] M. B. Ascari et al., “Ocean Thermal Extractable Energy Visualization- Final Technical Report on Award DE-EE0002664. October 28, 2012,” Oct. 2012, doi: 10.2172/1055457. [80] L. T. Rauchenstein, J. H. Vanzwieten, and H. P. Hanson, “Model-based global assessment of OTEC resources with data validation off Southeast Florida,” Ocean. 2011 IEEE - Spain, 2011, doi: 10.1109/OCEANS-SPAIN.2011.6003534. [81] J. H. Vanzwieten, L. T. Rauchenstein, H. P. Hanson, and M. R. Dhanak, “Assessment of HYCOM as a tool for estimating Florida’s OTEC potential,” Ocean. - MTS/IEEE Kona, Progr. B., 2011, doi: 10.23919/OCEANS.2011.6107134. [82] J. Denton, P. Bakstad, … K. M.-T. E. C., and undefined 1979, “Design of a 0.2 MWe (net) Plate-Type, OTEC Heat Exchanger Test Article and a 10 MWe (net) Power Module,” books.google.com, Accessed: Mar. 05, 2022. [Online]. Available: https://books.google.com/books?hl=en&lr=&id=0akYAQAAIAAJ&oi=fnd&pg=RA5- PT11&dq=bakstad+denton+otec&ots=ZY5XorH2nN&sig=eK9SfpAOoUru_Mbz2U4sgtZ bJ8E. [83] Olmstead and Munn, “Optimizing plant design for minimum cost per kilowatt with Refrigerant-22 working fluid - NASA/ADS.” 83 https://ui.adsabs.harvard.edu/abs/1979oteo....1Q...4O/abstract (accessed Mar. 05, 2022). [84] JF George, “Proceedings of the 6th Ocean Thermal Energy Conversion Conference: Ocean ... - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=0akYAQAAIAAJ&oi=fnd&pg=RA1- PT1&dq=james+f+george+otec&ots=ZY5XorIZuO&sig=IMOuQlOQY7DisodZBUpEsF OsjJU&redir_esc=y#v=onepage&q=james f george otec&f=false (accessed Mar. 05, 2022). [85] R. Scott, “Conceptual designs and costs of OTEC 10/40 MW spar platforms - NASA/ADS.” https://ui.adsabs.harvard.edu/abs/1979oteo....1Q...4S/abstract (accessed Mar. 21, 2022). [86] P. Bakstad and R. Pearson, “TRW PSD-I power system design - NASA/ADS.” https://ui.adsabs.harvard.edu/abs/1979oteo....1Q...4B/abstract (accessed Mar. 05, 2022). [87] C. . Upshaw, “Thermodynamic and economic feasibility analysis of a 20 MW ocean thermal energy conversion (OTEC) power plant.” https://tdl-ir.tdl.org/handle/2152/ETDUT- 2012-05-5637 (accessed Mar. 05, 2022). [88] L. A. Vega, “Economics of Ocean Thermal Energy Conversion (OTEC): An Update,” Proc. Annu. Offshore Technol. Conf., vol. 4, pp. 3239–3256, May 2010, doi: 10.4043/21016-MS. [89] J. Langer, J. Quist, and K. Blok, “Recent progress in the economics of ocean thermal energy conversion: Critical review and research agenda,” Renew. Sustain. Energy Rev., vol. 130, p. 109960, Sep. 2020, doi: 10.1016/J.RSER.2020.109960. [90] “U.S. Energy Information Administration (EIA) - Source.” https://www.eia.gov/outlooks/aeo/electricity_generation.php (accessed Mar. 05, 2022). [91] “Lazard.com | Levelized Cost of Energy and Levelized Cost of Storage 2018.” https://www.lazard.com/perspective/levelized-cost-of-energy-and-levelized-cost-ofstorage- 2018/ (accessed Mar. 05, 2022). [92] “Fiji Islands, 2010 - 2012, Production & Sales of Electricity by Fiji Electricity Authority (FEA) | PRDR Sustainable Energy for All.” https://prdrse4all.spc.int/data/content/fiji84 islands-2010-2012-production-sales-electricity-fiji-electricity-authority-fea (accessed Mar. 05, 2022). [93] K. Lammers, P. Bertheau, and P. Blechinger, “Exploring requirements for sustainable energy supply planning with regard to climate resilience of Southeast Asian islands,” Energy Policy, vol. 146, p. 111770, Nov. 2020, doi: 10.1016/J.ENPOL.2020.111770. [94] G. W. Hong and N. Abe, “Sustainability assessment of renewable energy projects for offgrid rural electrification: The Pangan-an Island case in the Philippines,” Renew. Sustain. Energy Rev., vol. 16, no. 1, pp. 54–64, Jan. 2012, doi: 10.1016/J.RSER.2011.07.136. [95] M. H. Ashourian, S. M. Cherati, A. A. Mohd Zin, N. Niknam, A. S. Mokhtar, and M. Anwari, “Optimal green energy management for island resorts in Malaysia,” Renew. Energy, vol. 51, pp. 36–45, Mar. 2013, doi: 10.1016/J.RENENE.2012.08.056. [96] “Deep Learning for Time Series Forecasting.” https://machinelearningmastery.com/deeplearning- for-time-series-forecasting/ (accessed Mar. 06, 2022). [97] “Time Series Forecasting: Definition & Examples | Tableau.” https://www.tableau.com/learn/articles/time-series-forecasting (accessed Mar. 06, 2022). [98] “How to Use Machine Learning (ML) for Time Series Forecasting – NIX United.” https://nix-united.com/blog/find-out-how-to-use-machine-learning-for-time-seriesforecasting/ (accessed Mar. 06, 2022). [99] “Python RNN: Recurrent Neural Networks for Time Series Forecasting | by Heiko Onnen | Towards Data Science.” https://towardsdatascience.com/temporal-loops-intro-torecurrent- neural-networks-for-time-series-forecasting-in-python-b0398963dc1f (accessed Mar. 06, 2022). [100] “Introduction to Time Series Analysis in Machine learning | Analytics Steps.” https://www.analyticssteps.com/blogs/introduction-time-series-analysis-time-seriesforecasting- machine-learning-methods-models (accessed Mar. 06, 2022). [101] “LSTM Neural Network: The Basic Concept | by Aleia Knight | Towards Data Science.” https://towardsdatascience.com/lstm-neural-network-the-basic-concept-a9ba225616f7 (accessed Mar. 06, 2022). 85 [102] “Time Series Forecasting using Facebook Prophet library in Python!” https://www.analyticsvidhya.com/blog/2020/10/time-series-forecasting-using-facebookprophet- library-in-python/ (accessed Mar. 06, 2022). [103] “Why Are People Bashing Facebook Prophet.” https://analyticsindiamag.com/why-arepeople- bashing-facebook-prophet/ (accessed Mar. 06, 2022). [104] “Time Series forecasting with NBEATS | DeepDetect.” https://www.deepdetect.com/blog/11-ts-forecast-nbeats/ (accessed Mar. 06, 2022). [105] “Darts: Time Series Made Easy in Python | by Julien Herzen | Unit8 - Big Data & AI | Medium.” https://medium.com/unit8-machine-learning-publication/darts-time-seriesmade- easy-in-python-5ac2947a8878 (accessed Mar. 06, 2022). [106] L. Martel et al., “Ocean Thermal Energy Conversion Life Cycle Cost Assessment, Final Technical Report, 30 May 2012,” May 2012, doi: 10.2172/1045340. [107] L. A. Vega, “Ocean Thermal Energy Conversion,” Encycl. Sustain. Sci. Technol., pp. 7296–7328, 2012, doi: 10.1007/978-1-4419-0851-3_695. [108] P. Ahmadi, I. Dincer, M. R.-I. J. of H. Energy, and undefined 2013, “Energy and exergy analyses of hydrogen production via solar-boosted ocean thermal energy conversion and PEM electrolysis,” Elsevier, Accessed: Mar. 14, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0360319912024706. [109] S. M. Masutani and P. . Takahashi, “OCEAN THERMAL ENERGY CONVERSION (OTEC),” 2001. https://curry.eas.gatech.edu/Courses/5225/ency/Chapter2/Ency_Oceans/OTEC.pdf (accessed Mar. 14, 2022). [110] F. M. Mencher, R. B. Spencer, J. W. Woessner, S. J. Katase, and D. K. Barclay, “GROWTH OF NORI (Porphyra tenera) IN AN EXPERIMENTAL OTECAQUACULTURE SYSTEM IN HAWAII,” J. World Maric. Soc., vol. 14, no. 1–4, pp. 458–470, Mar. 1983, doi: 10.1111/J.1749-7345.1983.TB00098.X. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1761 | |
dc.description | Supervised by Dr. Mohammad Ahsan Habib, Professor, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical and Production Engineering, 2022. | en_US |
dc.description.abstract | Bangladesh has been steeply growing towards a concerning power demand. The coastal region and nearby islands surrounding the Bay of Bengal barely gets more than half of its required power through conventional power grid sources. This research attempts to look at the ocean thermal reserves of the Bay of Bengal and place a model 100 MW Net/150 MW gross OTEC power plant that could potentially alleviate the power shortage in the focused region. The potential sites were identified by analyzing big data obtained from HYCOM+NCODA using advanced data analytics. Placing the hypothetical plant, an estimated power output is calculated for different seasons. Cost estimations are found from an established model to provide an insight of the approximate levelized cost of electricity. A machine learning algorithm is trained to forecast the behavior of the temperature difference over the coming years to verify the consistency of the plant’s power output during its lifetime. Findings reveal that the estimated power ranges between 133 MW to 158 MW net power throughout the year. Levelized cost of electricity ranges 0.164 to 0.605 $/kWh for its low-medium-high estimates. Time series forecasting of historical data provide a clear image of the temperature difference in the coming years, indicating satisfactory consistency in generated power throughout the plant’s life. The work is novel as no prior work is noticeable in the OTEC field incorporates the use of modern data analytic tools or machine learning algorithms. Very few works in the field present optimum site selection as well as pertaining computations of the model plant’s performance. Even further novelty of the work can be posited to no comprehensive OTEC based research can be seen based on the Bay of Bengal or Bangladesh. The findings present an attractive argument and show promise, however, practical implementation of such a large plant requires multiple rounds of trial and errors to minimize failure and cost overload. Future research could implement a physical scaled model of the plant to observe its harvested power and associated costs. With modern advances in technology and possible government sanctions, the prospect of looking into OTEC as a renewable and environment friendly power alternative takes immediate priority. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh | en_US |
dc.subject | OTEC, Machine Learning, Data Analytics, Renewable Energy, Forecasting, NBEATS, Darts, CAPEX, OPEX | en_US |
dc.title | A Machine Learning based assessment of OTEC potential in the Bay of Bengal and it's harvesting approach | en_US |
dc.type | Thesis | en_US |