dc.identifier.citation |
[1] Shiva Kumar B, Sudhakar K. Performance evaluation of 10 MW grid connected solar photovoltaic power plant in India. Energy Reports 2015;1:184–92. https://doi.org/10.1016/j.egyr.2015.10.001. [2] IRENA. Solar Energy Data. Install Capacit Trends 2019:1–5. https://www.irena.org/solar. [3] Fesharaki VJ, Dehghani M, Fesharaki JJ, Tavasoli H. The Effect of Temperature on Photovoltaic Cell Efficiency. Proceeding 1st Int Conf Emerg Trends Energy Conserv 2011:20–1. [4] Siecker J, Kusakana K, Numbi BP. A review of solar photovoltaic systems cooling technologies. Renew Sustain Energy Rev 2017;79:192–203. https://doi.org/10.1016/j.rser.2017.05.053. [5] de Winter F. Solar collectors, energy storage, and materials n.d. [6] Bakari R, Minja RJA, Njau KN. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying. J Energy 2014;2014:1–8. https://doi.org/10.1155/2014/247287. [7] Badiee A, Ashcroft IA, Wildman RD. The thermo-mechanical degradation of ethylene vinyl acetate used as a solar panel adhesive and encapsulant. Int J Adhes Adhes 2016;68:212–8. https://doi.org/10.1016/j.ijadhadh.2016.03.008. [8] Jiang S, Wang K, Zhang H, Ding Y, Yu Q. Encapsulation of PV Modules Using Ethylene Vinyl Acetate Copolymer as the Encapsulant. Macromol React Eng 2015;9:522–9. https://doi.org/10.1002/mren.201400065. [9] Alaaeddin MH, Sapuan SM, Zuhri MYM, Zainudin ES, Al-Oqla FM. Polyvinyl fluoride (PVF); Its Properties, Applications, and Manufacturing Prospects. IOP Conf Ser Mater Sci Eng 2019;538. https://doi.org/10.1088/1757- 899X/538/1/012010. [10] Ebnesajjad S. Polyvinyl Fluoride: Technology and Applications of PVF. Elsevier; 2012. https://doi.org/10.1016/C2011-0-05117-7. 60 [11] Zhang D, Allagui A. Chapter 8 - Fundamentals and performance of solar photovoltaic systems. In: Assad MEH, Rosen MA, editors. Des. Perform. Optim. Renew. Energy Syst., Academic Press; 2021, p. 117–29. https://doi.org/https://doi.org/10.1016/B978-0-12-821602-6.00009-2. [12] Jiang L, Cui S, Sun P, Wang Y, Yang C. Comparison of Monocrystalline and Polycrystalline Solar Modules. Proc 2020 IEEE 5th Inf Technol Mechatronics Eng Conf ITOEC 2020 2020:341–4. https://doi.org/10.1109/ITOEC49072.2020.9141722. [13] Martin II J. Monocrystalline vs Polycrystalline Solar Panels: Busting Myths 2012. https://www.solarchoice.net.au/blog/monocrystalline-vs-polycrystallinesolar- panels-busting-myths/. [14] Perraki V. Temperature Dependence on the Photovoltaic Properties of Selected Thin-Film Modules. Int J Renew Sustain Energy 2013;2:140. https://doi.org/10.11648/j.ijrse.20130204.12. [15] Green M, Dunlop E, Hohl-Ebinger J, Yoshita M, Kopidakis N, Hao X. Solar cell efficiency tables (version 57). Prog Photovoltaics Res Appl 2021;29:3–15. https://doi.org/10.1002/pip.3371. [16] Cui Y, Yao H, Hong L, Zhang T, Tang Y, Lin B, et al. 17% efficiency organic photovoltaic cell with superior processability. Natl Sci Rev 2019;7. https://doi.org/10.1093/nsr/nwz200. [17] Gaglia AG, Lykoudis S, Argiriou AA, Balaras CA, Dialynas E. Energy efficiency of PV panels under real outdoor conditions–An experimental assessment in Athens, Greece. Renew Energy 2017;101:236–43. https://doi.org/10.1016/j.renene.2016.08.051. [18] Du D, Darkwa J, Kokogiannakis G. Thermal management systems for Photovoltaics (PV) installations: A critical review. Sol Energy 2013;97:238–54. https://doi.org/10.1016/j.solener.2013.08.018. [19] Atsu D, Seres I, Aghaei M, Farkas I. Analysis of long-term performance and reliability of PV modules under tropical climatic conditions in sub-Saharan. Renew Energy 2020;162:285–95. https://doi.org/10.1016/j.renene.2020.08.021. 61 [20] Bahaidarah HMS, Baloch AAB, Gandhidasan P. Uniform cooling of photovoltaic panels: A review. Renew Sustain Energy Rev 2016;57:1520–44. https://doi.org/10.1016/j.rser.2015.12.064. [21] Barako MT, Park W, Marconnet AM, Asheghi M, Goodson KE. Thermal cycling, mechanical degradation, and the effective figure of merit of a thermoelectric module. J Electron Mater 2013;42:372–81. https://doi.org/10.1007/s11664-012-2366-1. [22] Ndiaye A, Kébé CMF, Charki A, Ndiaye PA, Sambou V, Kobi A. Degradation evaluation of crystalline-silicon photovoltaic modules after a few operation years in a tropical environment. Sol Energy 2014;103:70–7. https://doi.org/10.1016/j.solener.2014.02.006. [23] Kumar M, Kumar A. Performance assessment and degradation analysis of solar photovoltaic technologies: A review. Renew Sustain Energy Rev 2017;78:554– 87. https://doi.org/10.1016/j.rser.2017.04.083. [24] Dwivedi P, Sudhakar K, Soni A, Solomin E, Kirpichnikova I. Advanced cooling techniques of P.V. modules: A state of art. Case Stud Therm Eng 2020;21:100674. https://doi.org/10.1016/j.csite.2020.100674. [25] Cuce E, Bali T, Sekucoglu SA. Effects of passive cooling on performance of silicon photovoltaic cells. Int J Low-Carbon Technol 2011;6:299–308. https://doi.org/10.1093/ijlct/ctr018. [26] Gotmare JA, Borkar DS, Hatwar PR. Experimental Investigation of Pv Panel With Fin Cooling Under Natural Convection 2015:447–54. [27] El Mays A, Ammar R, Hawa M, Akroush MA, Hachem F, Khaled M, et al. Improving Photovoltaic Panel Using Finned Plate of Aluminum. Energy Procedia 2017;119:812–7. https://doi.org/10.1016/j.egypro.2017.07.103. [28] Bayrak F, Oztop HF, Selimefendigil F. Effects of different fin parameters on temperature and efficiency for cooling of photovoltaic panels under natural convection. Sol Energy 2019;188:484–94. https://doi.org/10.1016/j.solener.2019.06.036. [29] Elbreki AM, Sopian K, Fazlizan A, Ibrahim A. An innovative technique of 62 passive cooling PV module using lapping fins and planner reflector. Case Stud Therm Eng 2020;19:100607. https://doi.org/10.1016/j.csite.2020.100607. [30] Arifin Z, Tjahjana DDDP, Hadi S, Rachmanto RA, Setyohandoko G, Sutanto B. Numerical and experimental investigation of air cooling for photovoltaic panels using aluminum heat sinks. Int J Photoenergy 2020;2020. https://doi.org/10.1155/2020/1574274. [31] Popovici CG, Hudişteanu SV, Mateescu TD, Cherecheş NC. Efficiency Improvement of Photovoltaic Panels by Using Air Cooled Heat Sinks. Energy Procedia 2016;85:425–32. https://doi.org/10.1016/j.egypro.2015.12.223. [32] Haque MA, Miah MAK, Hossain S, Rahman MH. Passive cooling configurations for enhancing the photovoltaic efficiency in hot climatic conditions. J Sol Energy Eng 2021:1–25. https://doi.org/10.1115/1.4052062. [33] Salami P, Ajabshirchi Y, Abdollahpoor S, Behfar H. A Comparison Among Different Parameters for the Design of a Photovoltaic/Thermal System Using Computational Fluid Dynamics. Eng Technol Appl Sci Res 2016;6:1119–23. https://doi.org/10.48084/etasr.667. [34] Marinić-Kragić I, Nižetić S, Grubišić-Čabo F, Čoko D. Analysis and optimization of passive cooling approach for free-standing photovoltaic panel: Introduction of slits. Energy Convers Manag 2020;204. https://doi.org/10.1016/j.enconman.2019.112277. [35] Selimefendigil F, Bayrak F, Oztop HF. Experimental analysis and dynamic modeling of a photovoltaic module with porous fins. Renew Energy 2018;125:193–205. https://doi.org/10.1016/j.renene.2018.02.002. [36] Hasan DJ, Farhan AA. Enhancing the efficiency of photovoltaic panel using open-cell copper metal foam fins. Int J Renew Energy Res 2019;9:1849–55. [37] Kim J, Bae S, Yu Y, Nam Y. Experimental and numerical study on the cooling performance of fins and metal mesh attached on a photovoltaic module. Energies 2019;13. https://doi.org/10.3390/en13010085. [38] Grubišić-Čabo F, Nižetić S, Marinić Kragić I, Čoko D. Further progress in the research of fin-based passive cooling technique for the free-standing silicon 63 photovoltaic panels. Int J Energy Res 2019;43:3475–95. https://doi.org/10.1002/er.4489. [39] Devcon. Devcon R2-42 Techincal Data Sheet n.d. https://www.surtimex.com/files/F-0022-0004.pdf. [40] SubsTech. Wrought Aluminum Alloy 1100 n.d. https://www.substech.com/dokuwiki/doku.php?id=wrought_aluminum_alloy_1 100. [41] Hernandez-Perez JG, Carrillo JG, Bassam A, Flota-Banuelos M, Patino-Lopez LD. A new passive PV heatsink design to reduce efficiency losses: A computational and experimental evaluation. Renew Energy 2020;147:1209–20. https://doi.org/10.1016/j.renene.2019.09.088. [42] Daut I, Zainuddin F, Irwan YM, Razliana ARN. Analysis of solar irradiance and solar energy in perlis, northern of peninsular Malaysia. Energy Procedia 2012;18:1421–7. https://doi.org/10.1016/j.egypro.2012.05.158. |
en_US |