dc.identifier.citation |
Basha, M. A. A., Ismail, A. A. A., & Imam, A. H. F. (2018). Does radiography still have a significant diagnostic role in evaluation of acute traumatic wrist injuries? a prospective comparative study. Emergency Radiology, 25(2), 129– 138 (cit. on p. 4). Bochkovskiy, A., Wang, C.-Y., & Liao, H.-Y. M. (2020). Yolov4: Optimal speed and accuracy of object detection. arXiv preprint arXiv:2004.10934 (cit. on p. 7). Bodla, N., Singh, B., Chellappa, R., & Davis, L. (2017). Improving object detection with one line of code. 2017. CoRR, abs/1704.04503. http://arxiv.org/abs/ 1704.04503 (cit. on pp. 17, 25) De Putter, C., Selles, R., Polinder, S., Panneman, M., Hovius, S., & van Beeck, E. F. (2012). Economic impact of hand and wrist injuries: Health-care costs and productivity costs in a population-based study. Jbjs, 94(9), e56 (cit. on p. 4). Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A large-scale hierarchical image database. 2009 IEEE conference on computer vision and pattern recognition, 248–255 (cit. on p. 1). Eksi, Z., & Cakiroglu, M. (2012). Performance evaluation of the popular segmentation algorithms for bone fracture detection. Global Journal on Technology, 1 (cit. on p. 9). He, K., Gkioxari, G., Dollar, P., & Girshick, R. ( ´ 2017). Mask r-cnn. Proceedings of the IEEE international conference on computer vision, 2961–2969 (cit. on pp. 7, 8, 19, 20). HHS, N. (2016). Medpix. https://medpix.nlm.nih.gov/search?allen=false& allt=false&alli=true&query=fracture. (Cit. on p. 12) Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., NanoCode012, Kwon, Y., TaoXie, Fang, J., imyhxy, Michael, K., Lorna, V, A., Montes, D., Nadar, J., Laughing, tkianai, yxNONG, Skalski, P., Wang, Z., . . . Minh, M. T. (2022). ultralytics/yolov5: v6.1 - TensorRT, TensorFlow Edge TPU and OpenVINO Export and Inference (Version v6.1). Zenodo. https://doi.org/10.5281/zenodo.6222936. (Cit. on p. 7) Karl, J. W., Olson, P. R., & Rosenwasser, M. P. (2015). The epidemiology of upper extremity fractures in the united states, 2009. Journal of orthopaedic trauma, 29(8), e242–e244 (cit. on p. 4). Kim, D., & MacKinnon, T. (2018). Artificial intelligence in fracture detection: Transfer learning from deep convolutional neural networks. Clinical radiology, 73(5), 439–445 (cit. on p. 9). 31 Bibliography Kositbowornchai, S., Nuansakul, R., Sikram, S., Sinahawattana, S., & Saengmontri, S. (2001). Root fracture detection: A comparison of direct digital radiography with conventional radiography. Dentomaxillofacial Radiology, 30(2), 106–109 (cit. on pp. 1, 9). Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollar, P. ( ´ 2017). Focal loss for dense object detection. Proceedings of the IEEE international conference on computer vision, 2980–2988 (cit. on pp. 7, 8, 20, 21). Outram, A. K. (2002). Bone fracture and within-bone nutrients: An experimentally based method for investigating levels of marrow extraction. McDonald Institute for Archaeological Research. (Cit. on p. 4). Radiopaedia. (2006). https://radiopaedia.org/search?lang=us&q=fracture. (Cit. on p. 12) Raisuddin, A. M., Vaattovaara, E., Nevalainen, M., Nikki, M., Jarvenp ¨ a¨a, E., Makko- ¨ nen, K., Pinola, P., Palsio, T., Niemensivu, A., Tervonen, O., et al. (2021). Critical evaluation of deep neural networks for wrist fracture detection. Scientific reports, 11(1), 1–11 (cit. on pp. 4, 10, 11). Rajpurkar, P., Irvin, J., Bagul, A., Ding, D., Duan, T., Mehta, H., Yang, B., Zhu, K., Laird, D., Ball, R. L., et al. (2017). Mura: Large dataset for abnormality detection in musculoskeletal radiographs. arXiv preprint arXiv:1712.06957 (cit. on p. 11). Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. Proceedings of the IEEE conference on computer vision and pattern recognition, 779–788 (cit. on pp. 5, 6). Redmon, J., & Farhadi, A. (2017). Yolo9000: Better, faster, stronger. Proceedings of the IEEE conference on computer vision and pattern recognition, 7263–7271 (cit. on p. 6). Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint arXiv:1804.02767 (cit. on p. 7). S.Gornale, S., U.Patravali. (2020). A comprehensive digital knee x-ray image dataset for the assessment of osteoarthritis. IEEE Transactions on Biomedical Engineering, 56(2), 407–415 (cit. on p. 12). Skalski, P. (2019). Make sense. https://www.makesense.ai/. (Cit. on pp. 14, 18) Solawetz, J. (2020). Yolov5 new version - improvements and evaluation. https: //blog.roboflow.com/yolov5-improvements - and - evaluation/. (Cit. on pp. 18, 19) Tan, M., Pang, R., & Le, Q. V. (2020). Efficientdet: Scalable and efficient object detection. Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, 10781–10790 (cit. on pp. 20, 21). Tentori, F., McCullough, K., Kilpatrick, R. D., Bradbury, B. D., Robinson, B. M., Kerr, P. G., & Pisoni, R. L. (2014). High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney international, 85(1), 166–173 (cit. on p. 4). Thatte, A. V. (2020). Evolution of yolo-yolo version 1. https://towardsdatascience. com/evolution-of-yolo-yolo-version-1-afb8af302bd2. (Cit. on p. 5) 32 Bibliography Thian, Y. L., Li, Y., Jagmohan, P., Sia, D., Chan, V. E. Y., & Tan, R. T. (2019). Convolutional neural networks for automated fracture detection and localization on wrist radiographs. Radiology: Artificial Intelligence, 1(1), e180001 (cit. on p. 10). Thuan, D. (2021). Evolution of yolo algorithm and yolov5: The state-of-the-art object detection algorithm (cit. on pp. 5, 6). Ubaidillah, S. H. S. A., Sallehuddin, R., & Ali, N. A. (2013). Cancer detection using aritifical neural network and support vector machine: A comparative study. Jurnal Teknologi, 65(1) (cit. on p. 1). Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., & Summers, R. M. (2017). Chestx-ray8: Hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. Proceedings of the IEEE conference on computer vision and pattern recognition, 2097–2106 (cit. on p. 12). Welling, R. D., Jacobson, J. A., Jamadar, D. A., Chong, S., Caoili, E. M., & Jebson, P. J. (2008). Mdct and radiography of wrist fractures: Radiographic sensitivity and fracture patterns. American Journal of Roentgenology, 190(1), 10–16 (cit. on p. 8). Yadav, D., & Rathor, S. (2020). Bone fracture detection and classification using deep learning approach. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC), 282–285 (cit. on p. 12). |
en_US |