dc.identifier.citation |
[1] Aggarwal S, Czaplicki S, Chintala K (2009) Hemodynamic effect of fetal supraventricular tachycardia on the unaffected twin. Prenat Diagn 29:292–293 [2] Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD (2016) A practical guide to non-invasive fetal electrocardiogram extraction and analysis. Physiol Meas 37(5): R1 [3] T. Lees, F. Shad-Kaneez, A. M. Simpson, N. T. Nassif, Y. Lin, and S. Lal, "Heart Rate Variability as a Biomarker for Predicting Stroke, Post-stroke Complications and Functionality," (in eng), Biomark Insights, vol. 13, pp. 1177271918786931-1177271918786931, 2018. [4] Behar JA, Bonnemains L, Shulgin V, Oster J, Ostras O, Lakhno I. Noninvasive fetal electrocardiography for the detection of fetal arrhythmias. Prenatal diagnosis. 2019 Jan 2. [5] Azariadi, D., Tsoutsouras, V., Xydis, S., & Soudris, D. (2016, May). ECG signal analysis and arrhythmia detection on IoT wearable medical devices. In 2016 5th International conference on modern circuits and systems technologies (MOCAST) (pp. 1-4). IEEE. [6] Chia EL, Ho TF, Rauff M, Yip WC. Cardiac time intervals of normal fetuses using noninvasive fetal electrocardiography. Prenat Diagn. 2005;25(7):546–52. [7] Taylor MJ, Smith MJ, Thomas M, Green AR, Cheng F, Oseku-Afful S, Wee LY, Fisk NM, Gardiner HM. Non-invasive fetal electrocardiography in singleton and multiple pregnancies. BJOG. 2003;110(7):668–78. [8] Verdurmen, K. M., Lempersz, C., Vullings, R., Schroer, C., Delhaas, T., van Laar, J. O., & Oei, S. (2016). Normal ranges for fetal electrocardiogram values for the healthy fetus of 18–24 weeks of 26 gestation: a prospective cohort study. BMC Pregnancy and Childbirth, 16(1), 1-7. [9] Sato, N., Hoshiai, T., Ito, T., Owada, K., Chisaka, H., Aoyagi, A., ... & Kimura, Y. (2011). Successful detection of the fetal electrocardiogram waveform changes during various states of singletons. The Tohoku journal of experimental medicine, 225(2), 89-94. [10] Debnath, T., Hasan, M. M., & Biswas, T. (2016, December). Analysis of ECG signal and classification of heart abnormalities using Artificial Neural Network. In 2016 9th International Conference on Electrical and Computer Engineering (ICECE) (pp. 353-356). IEEE. [11] Venkatesan, C., Karthigaikumar, P., & Varatharajan, R. J. M. T. (2018). A novel LMS algorithm for ECG signal preprocessing and KNN classifier based abnormality detection. Multimedia Tools and Applications, 77(8), 10365-10374. [12] Behar J, Andreotti F, Zaunseder S, Oster J, Clifford GD (2016) A practical guide to noninvasive fetal electrocardiogram extraction and analysis. Physiol Meas 37(5):R1 [13] Clifford GD, Silva I, Behar J, Moody GB (2014) Non-invasive fetal ECG analysis. Physiol Measur 35(8):1521 [14] Smith V, Arunthavanathan S, Nair A, Ansermet D, da Silva Costa F, Wallace EM (2018) A systematic review of cardiac time intervals utilising non-invasive fetal electrocardiogram in normal fetuses. BMC Pregnancy Childbirth 18(1):370 [15] Smith V, Arunthavanathan S, Nair A, Ansermet D, da Silva Costa F, Wallace EM (2018) A systematic review of cardiac time intervals utilising non-invasive fetal electrocardiogram in normal fetuses. BMC Pregnancy Childbirth 18(1):370 [16] Strasburger, J. F. (2000). Fetal arrhythmias. Progress in pediatric cardiology, 11(1), 1-17. 27 [17] Strasburger, J. F., Cheulkar, B., & Wichman, H. J. (2007). Perinatal arrhythmias: diagnosis and management. Clinics in perinatology, 34(4), 627-652. [18] Clifford G, Sameni R, Ward J, Robinson J, Wolfberg AJ (2011) Clinically accurate fetal ECG parameters acquired from maternal abdominal sensors. Am J Obstet Gynecol 205(1):47 [19] Behar J, Zhu T, Oster J, Niksch A, Mah DY, Chun T, Greenberg J, Tanner C, Harrop J, Sameni [20] R, Ward J (2016) Evaluation of the fetal QT interval using non-invasive fetal ECG technology.Physiol Meas 37(9):139 [21] Lakhno I, Behar JA, Oster J, Shulgin V, Ostras O, Andreotti F (2017) The use of non-invasive fetal electrocardiography in diagnosing second-degree fetal atrioventricular block. Maternal Health Neonatol Perinatol 3(1):14 [22] Sharma, K., & Masood, S. (2021). Deep Learning-Based Non-invasive Fetal Cardiac Arrhythmia Detection. In Applications of Artificial Intelligence and Machine Learning (pp. 511- 523). Springer, Singapore. [23] Zhong W, Liao L, Guo X, Wang G (2018) A deep learning approach for fetal QRS complex detection. Physiol Measure 39(4):045004 [24] Lee JS, Seo M, Kim SW, Choi M (2018) Fetal QRS detection based on convolutional neural networks in noninvasive fetal electrocardiogram. In: 4th international conference on frontiers of signal processing (ICFSP). IEEE, pp 75–78 [25] U. R. Acharya, H. Fujita, S. L. Oh, Y. Hagiwara, J. H. Tan, and M. Adam, ‘‘Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals,’’ Inf. Sci., vols. 415–416, pp. 190–198, Nov. 2017. 28 [26] S. Kumar, W. J. Nilsen, A. Abernethy, A. Atienza, K. Patrick, M. Pavel, W. T. Riley, A. Shar, B. Spring, D. Spruijt-Metz, D. Hedeker, V. Honavar, R. Kravitz, R. G. Lefebvre, D. C. Mohr, s. A. Murphy, C. Quinn, V. Shusterman, and D. Swendeman, ‘‘Mobile health technology evaluation: The mHealth evidence workshop,’’ Amer. J. Preventive Med., vol. 45, no. 2, pp. 228–236, 2013. [27] Karpagachelvi S, Arthanari M, Sivakumar M (2012) Classification of electrocardiogram signals with support vector machines and extreme learning machine. Neural Comput Appl 21:1331– 1339 [28] Jun TJ, Park HJ, Minh NH, Kim D, Kim YH (2016) Premature ventricular contraction beat detection with deep neural networks. In: 15th IEEE international conference on machine learning and applications (ICMLA). IEEE, pp 859–864 [29] Pourbabaee B, Roshtkhari MJ, Khorasani K (2016) Feature learning with deep convolutional neural networks for screening patients with Paraoxysmal atrial fibrillation. In: 2016 IEEE international joint conference on neural networks. IEEE, pp5057–5064 [30] Andreotti F, Carr O, Pimentel MA, Mahdi A, De Vos M (2017) Comparing feature-based classifiers and convolutional neural networks to detect arrhythmia from short segments of ECG. In: 2017 computing in cardiology (CinC). IEEE, pp 1–4 [32] Isin A, Ozdalili S (2017) Cardiac arrhythmia detection using deep learning. Proc Comput Sci 120:268–275 [33] Gao J, Zhang H, Lu P,Wang Z (2019) An effective LSTM recurrent network to detect arrhythmia on imbalanced ECG dataset. J Healthcare Eng 2019 18. Zhong W, Liao L, Guo X, Wang G (2018) 29 |
en_US |