dc.identifier.citation |
[1] J. Gladju, B. S. Kamalam, and A. Kanagaraj, “Applications of data mining and machine learning framework in aquaculture and fisheries: A review,” Smart Agricultural Technology, vol. 2, p. 100061, 2022. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2772375522000260 [2] J. Nidzwetzki and R. G¨uting, “Distributed secondo: an extensible and scalable database management system,” Distributed and Parallel Databases, vol. 35, 12 2017. [3] W. N. Probst, “How emerging data technologies can increase trust and transparency in fisheries,” ICES Journal of Marine Science, vol. 77, no. 4, pp. 1286–1294, 03 2019. [Online]. Available: https://doi.org/10.1093/icesjms/ fsz036 [4] G. Arbanas, “Diagnostic and Statistical Manual of Mental Disorders (DSM-5),” Alcoholism and psychiatry research, vol. 51, pp. 61–64, 2015. [Online]. Available: https://www.amberton.edu/media/Syllabi/Spring% 202022/Graduate/CSL6798 E1.pdf [5] C. Pala, “Tracking f shy behavior, from space,” The Atlantic, vol. 16, 2014. [6] A. Vermeulen, H. Vandebosch, and W. Heirman, “#Smiling, #venting, or both? Adolescents’ social sharing of emotions on social media,” Computers in Human Behavior, vol. 84, pp. 211–219, 2018. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S0747563218300803 [7] J. Kim, J. Lee, E. Park, and J. Han, “A deep learning model for detecting mental illness from user content on social media,” Scientific reports, vol. 10, no. 1, pp. 1–6, 2020. 38 Bibliography 39 [8] D. M. Low, L. Rumker, T. Talkar, J. B. Torous, G. A. Cecchi, and S. S. Ghosh, “Natural language processing reveals vulnerable mental health support groups and heightened health anxiety on reddit during covid-19: Observational study,” Journal of Medical Internet Research, vol. 22, 2020. [9] J. L. Fleiss, B. Levin, and M. C. Paik, Statistical Methods for Rates and Proportions, 3rd ed., ser. Wiley Series in Probability and Statistics. John Wiley & Sons, Inc., 2013. [Online]. Available: https: //onlinelibrary.wiley.com/doi/book/10.1002/0471445428 [10] K. L. Gwet, Handbook of Inter-rater Reliability: The Definitive Guide to Measuring the Extent of Agreement Among Raters. Advanced Analytics, LLC, 2014. [11] Leard Statistics, “Fleiss’ kappa in SPSS statistics,” 2019. [Online]. Available: https://statistics.laerd.com/spss-tutorials/fleiss-kappa-in-spss-statistics.php [12] J. O. Salminen, H. A. Al-Merekhi, P. Dey, and B. J. Jansen, “Inter-Rater Agreement for Social Computing Studies,” in 2018 Fifth International Conference on Social Networks Analysis, Management and Security (SNAMS). IEEE, 2018, pp. 80–87. [Online]. Available: https://ieeexplore.ieee.org/abstract/document/8554744 [13] Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q. Gao, K. Macherey, J. Klingner, A. Shah, M. Johnson, X. Liu, Lukasz Kaiser, S. Gouws, Y. Kato, T. Kudo, H. Kazawa, K. Stevens, G. Kurian, N. Patil, W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick, O. Vinyals, G. Corrado, M. Hughes, and J. Dean, “Google’s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation,” CoRR, vol. abs/1609.08144, 2016. [Online]. Available: http://arxiv.org/abs/1609.08144 [14] N. B. V. Le and J.-H. Huh, “A design of smart aquaculture recommender system applying big data analytics,” 07 2021. [15] S. B. Saila, M. Wigbout, and R. J. Lermit, “Comparison of some time series models for the analysis of fisheries data,” ICES Journal of Marine Science, vol. 39, no. 1, pp. 44–52, 04 1980. [Online]. Available: https://doi.org/10.1093/icesjms/39.1.44 [16] H. Li, Z. Li, S. Peng, J. Li, and C. E. Tungom, “Mining the frequency of time-constrained serial episodes over massive data sequences Bibliography 40 and streams,” Future Generation Computer Systems, vol. 110, pp. 849–863, 2020. [Online]. Available: https://www.sciencedirect.com/science/article/ pii/S0167739X18332138 |
en_US |