Thermodynamic Investigation of Combined Cycles And Polygeneration Systems With An Emphasis On Supercritical Carbon Dioxide Power Cycles

Show simple item record

dc.contributor.author Bishal, Salim Sadman
dc.contributor.author Faysal, Dewan Fahim
dc.date.accessioned 2023-03-29T08:36:17Z
dc.date.available 2023-03-29T08:36:17Z
dc.date.issued 2022-05-31
dc.identifier.citation [1] Y. Glavatskaya, P. Podevin, V. Lemort, O. Shonda, and G. Descombes, “Reciprocating Expander for an Exhaust Heat Recovery Rankine Cycle for a Passenger Car Application,” Energies , vol. 5, no. 6. 2012, doi: 10.3390/en5061751. [2] P. Roy, M. Désilets, N. Galanis, H. Nesreddine, and E. Cayer, “Thermodynamic analysis of a power cycle using a low-temperature source and a binary NH3–H2O mixture as working fluid,” Int. J. Therm. Sci., vol. 49, no. 1, pp. 48–58, Jan. 2010, doi: 10.1016/J.IJTHERMALSCI.2009.05.014. [3] K. H. Kim, C. H. Han, and K. Kim, “Effects of ammonia concentration on the thermodynamic performances of ammonia–water based power cycles,” Thermochim. Acta, vol. 530, pp. 7–16, Feb. 2012, doi: 10.1016/J.TCA.2011.11.028. [4] U. Drescher and D. Brüggemann, “Fluid selection for the Organic Rankine Cycle (ORC) in biomass power and heat plants,” Appl. Therm. Eng., vol. 27, no. 1, pp. 223–228, Jan. 2007, doi: 10.1016/J.APPLTHERMALENG.2006.04.024. [5] A. Pezzuolo, A. Benato, A. Stoppato, and A. Mirandola, “The ORCPD: A versatile tool for fluid selection and Organic Rankine Cycle unit design,” Energy, vol. 102, pp. 605–620, May 2016, doi: 10.1016/J.ENERGY.2016.02.128. [6] R. V. Padilla, G. Demirkaya, D. Y. Goswami, E. Stefanakos, and M. M. Rahman, “Analysis of power and cooling cogeneration using ammonia-water mixture,” Energy, vol. 35, no. 12, pp. 4649–4657, Dec. 2010, doi: 10.1016/J.ENERGY.2010.09.042. 50 [7] A. Fontalvo, H. Pinzon, J. Duarte, A. Bula, A. G. Quiroga, and R. V. Padilla, “Exergy analysis of a combined power and cooling cycle,” Appl. Therm. Eng., vol. 60, no. 1–2, pp. 164–171, Oct. 2013, doi: 10.1016/J.APPLTHERMALENG.2013.06.034. [8] M. Pouraghaie, K. Atashkari, S. M. Besarati, and N. Nariman-zadeh, “Thermodynamic performance optimization of a combined power/cooling cycle,” Energy Convers. Manag., vol. 51, no. 1, pp. 204–211, Jan. 2010, doi: 10.1016/J.ENCONMAN.2009.09.014. [9] A. Habibzadeh, M. M. Rashidi, and N. Galanis, “Analysis of a combined power and ejector-refrigeration cycle using low temperature heat,” Energy Convers. Manag., vol. 65, pp. 381–391, 2013, doi: 10.1016/j.enconman.2012.08.020. [10] E. Galloni, G. Fontana, and S. Staccone, “Design and experimental analysis of a mini ORC (organic Rankine cycle) power plant based on R245fa working fluid,” Energy, vol. 90, pp. 768–775, Oct. 2015, doi: 10.1016/J.ENERGY.2015.07.104. [11] S. Shaaban, “Analysis of an integrated solar combined cycle with steam and organic Rankine cycles as bottoming cycles,” Energy Convers. Manag., vol. 126, pp. 1003–1012, Oct. 2016, doi: 10.1016/J.ENCONMAN.2016.08.075. [12] A. Kouta, F. A. Al-sulaiman, and M. Atif, “Energy analysis of a solar driven cogeneration system using supercritical CO 2 power cycle and MEE-TVC desalination system,” Energy, 2016, doi: 10.1016/j.energy.2016.11.041. [13] X. Shi and D. Che, “A combined power cycle utilizing lowtemperature waste heat and LNG cold energy,” Energy Convers. Manag., vol. 50, no. 3, pp. 567–575, Mar. 2009, doi: 51 10.1016/J.ENCONMAN.2008.10.015. [14] A. Vidal, R. Best, R. Rivero, and J. Cervantes, “Analysis of a combined power and refrigeration cycle by the exergy method,” Energy, vol. 31, no. 15, pp. 3401–3414, Dec. 2006, doi: 10.1016/J.ENERGY.2006.03.001. [15] Y. M. El-Sayed and M. Tribus, “A theoretical comparison of the Rankine and Kalina cycles,” ASME Publ. AES, vol. 1, pp. 97–102, 1985. [16] H. D. Madhawa Hettiarachchi, M. Golubovic, W. M. Worek, and Y. Ikegami, “The Performance of the Kalina Cycle System 11(KCS-11) With Low-Temperature Heat Sources,” J. Energy Resour. Technol., vol. 129, no. 3, pp. 243–247, Feb. 2007, doi: 10.1115/1.2748815. [17] H. Jouhara, N. Khordehgah, S. Almahmoud, B. Delpech, A. Chauhan, and S. A. Tassou, “Waste heat recovery technologies and applications,” Therm. Sci. Eng. Prog., vol. 6, pp. 268–289, Jun. 2018, doi: 10.1016/J.TSEP.2018.04.017. [18] R. Loni, G. Najafi, E. Bellos, F. Rajaee, Z. Said, and M. Mazlan, “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook,” J. Clean. Prod., vol. 287, p. 125070, Mar. 2021, doi: 10.1016/J.JCLEPRO.2020.125070. [19] Z. Y. Xu, R. Z. Wang, and C. Yang, “Perspectives for low-temperature waste heat recovery,” Energy, vol. 176, pp. 1037–1043, Jun. 2019, doi: 10.1016/J.ENERGY.2019.04.001. [20] R. Chacartegui, D. Sánchez, J. M. Muñoz, and T. Sánchez, “Alternative ORC bottoming cycles FOR combined cycle power 52 plants,” Appl. Energy, vol. 86, no. 10, pp. 2162–2170, Oct. 2009, doi: 10.1016/J.APENERGY.2009.02.016. [21] G. Fan, H. Li, Y. Du, S. Zheng, K. Chen, and Y. Dai, “Preliminary conceptual design and thermo-economic analysis of a combined cooling , heating and power system based on supercritical carbon dioxide cycle,” Energy, vol. 203, p. 117842, 2020, doi: 10.1016/j.energy.2020.117842. [22] A. De Pascale, C. Ferrari, F. Melino, M. Morini, and M. Pinelli, “Integration between a thermophotovoltaic generator and an Organic Rankine Cycle,” Appl. Energy, vol. 97, pp. 695–703, Sep. 2012, doi: 10.1016/J.APENERGY.2011.12.043. [23] F. Petrakopoulou, G. Tsatsaronis, T. Morosuk, and A. Carassai, “Conventional and advanced exergetic analyses applied to a combined cycle power plant,” Energy, vol. 41, no. 1, pp. 146–152, May 2012, doi: 10.1016/J.ENERGY.2011.05.028. [24] A. M. Bassily, “Modeling, analysis, and modifications of different GT cooling techniques for modern commercial combined cycle power plants with reducing the irreversibility of the HRSG,” Appl. Therm. Eng., vol. 53, no. 1, pp. 131–146, Apr. 2013, doi: 10.1016/J.APPLTHERMALENG.2013.01.002. [25] A. G. Kaviri, M. N. M. Jaafar, T. M. Lazim, and H. Barzegaravval, “Exergoenvironmental optimization of Heat Recovery Steam Generators in combined cycle power plant through energy and exergy analysis,” Energy Convers. Manag., vol. 67, pp. 27–33, Mar. 2013, doi: 10.1016/J.ENCONMAN.2012.10.017. [26] N. Modi, B. Pandya, and J. Patel, “Comparative analysis of a solar‐driven novel salt‐based absorption chiller with the 53 implementation of nanoparticles,” Int. J. Energy Res., vol. 43, no. 4, pp. 1563–1577, 2019. [27] Y. Bicer and I. Dincer, “Analysis and performance evaluation of a renewable energy based multigeneration system,” Energy, vol. 94, pp. 623–632, Jan. 2016, doi: 10.1016/J.ENERGY.2015.10.142. [28] Y. Ahn et al., “Review of supercritical CO2 power cycle technology and current status of research and development,” Nucl. Eng. Technol., vol. 47, no. 6, pp. 647–661, Oct. 2015, doi: 10.1016/J.NET.2015.06.009. [29] V. Dostal, M. J. Driscoll, P. Hejzlar, and N. E. Todreas, “A Supercritical CO2 Gas Turbine Power Cycle for Next-Generation Nuclear Reactors.” pp. 567–574, Apr. 2002, doi: 10.1115/ICONE10- 22192. [30] R. V. Padilla, Y. C. Soo Too, R. Benito, and W. Stein, “Exergetic analysis of supercritical CO2 Brayton cycles integrated with solar central receivers,” Appl. Energy, vol. 148, pp. 348–365, Jun. 2015, doi: 10.1016/J.APENERGY.2015.03.090. [31] U. B. Kaupp and R. Seifert, “Cyclic nucleotide-gated ion channels,” Physiol. Rev., vol. 82, no. 3, pp. 769–824, 2002. [32] P. E. Savage, S. Gopalan, T. I. Mizan, C. J. Martino, and E. E. Brock, “Reactions at supercritical conditions: Applications and fundamentals,” AIChE J., vol. 41, no. 7, pp. 1723–1778, 1995, doi: 10.1002/aic.690410712. [33] P. Nikolai, B. Rabiyat, A. Aslan, and A. Ilmutdin, Supercritical CO 2 : Properties and Technological Applications - A Review, no. July. 2019. [34] G. Sulzer, “Verfahren zur erzeugung von arbeit aus warme (Method for 54 producing work from heat),” Swiss Pat., vol. 269599, 1948. [35] D. P. Gokhshtein and G. P. Verkhivker, “Use of carbon dioxide as a heat carrier and working substance in atomic power stations,” Sov. At. Energy, vol. 26, no. 4, pp. 430–432, 1969. [36] G. Angelino, “Carbon dioxide condensation cycles for power production,” 1968. [37] J. R. Hoffmann and E. G. Feher, “150 kwe Supercritical Closed Cycle System,” J. Eng. Power, vol. 93, no. 1, pp. 70–80, Jan. 1971, doi: 10.1115/1.3445409. [38] A. Valero et al., “CGAM problem: Definition and conventional solution,” Energy, vol. 19, no. 3, pp. 279–286, 1994, doi: https://doi.org/10.1016/0360-5442(94)90112-0. [39] V. Dostal, M. J. Driscoll, and P. Hejzlar, “A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors,” MIT, 2004. [40] C. S. Turchi, Z. Ma, T. W. Neises, and M. J. Wagner, “Thermodynamic study of advanced supercritical carbon dioxide power cycles for concentrating solar power systems,” J. Sol. Energy Eng. Trans. ASME, vol. 135, no. 4, pp. 1–7, 2013, doi: 10.1115/1.4024030. [41] M. Kulhánek and V. Dostál, “Thermodynamic Analysis and Comparison of Supercritical Carbon Dioxide Cycles.” [42] D.-W. Sun, “Comparison of the performances of NH3-H2O, NH3- LiNO3 and NH3-NaSCN absorption refrigeration systems,” Energy Convers. Manag., vol. 39, no. 5, pp. 357–368, 1998, doi: https://doi.org/10.1016/S0196-8904(97)00027-7. 55 [43] Y. Liu, Y. Wang, and D. Huang, “Supercritical CO2 Brayton cycle: A state-of-the-art review,” Energy, vol. 189, p. 115900, 2019, doi: https://doi.org/10.1016/j.energy.2019.115900. [44] M. Mehrpooya, M. M. M. Sharifzadeh, and M. H. Katooli, “Thermodynamic analysis of integrated LNG regasification process configurations,” Prog. Energy Combust. Sci., vol. 69, pp. 1–27, 2018, doi: https://doi.org/10.1016/j.pecs.2018.06.001. [45] J. Song, X. Li, X. Ren, and C. Gu, “Performance analysis and parametric optimization of supercritical carbon dioxide (S-CO2) cycle with bottoming Organic Rankine Cycle (ORC),” Energy, vol. 143, pp. 406–416, 2018, doi: https://doi.org/10.1016/j.energy.2017.10.136. [46] C. Wu, S. Wang, X. Feng, and J. Li, “Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle,” Energy Convers. Manag., vol. 148, pp. 360–377, 2017, doi: https://doi.org/10.1016/j.enconman.2017.05.042. [47] M. Yari and S. M. S. Mahmoudi, “A thermodynamic study of waste heat recovery from GT-MHR using organic Rankine cycles,” Heat Mass Transf. und Stoffuebertragung, vol. 47, no. 2, pp. 181–196, 2011, doi: 10.1007/s00231-010-0698-z. [48] M. Khaljani, R. Khoshbakhti Saray, and K. Bahlouli, “Comprehensive analysis of energy, exergy and exergo-economic of cogeneration of heat and power in a combined gas turbine and organic Rankine cycle,” Energy Convers. Manag., vol. 97, pp. 154–165, 2015, doi: 10.1016/j.enconman.2015.02.067. [49] S. Hou, Y. Zhou, L. Yu, F. Zhang, and S. Cao, “Optimization of the combined supercritical CO2 cycle and organic Rankine cycle using 56 zeotropic mixtures for gas turbine waste heat recovery,” Energy Convers. Manag., vol. 160, no. January, pp. 313–325, 2018, doi: 10.1016/j.enconman.2018.01.051. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1797
dc.description Supervised by Dr. Mohammad Monjurul Ehsan, Associate Professor, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. en_US
dc.description.abstract Because of the tremendous growth in global population and economic activity, as well as growing environmental concerns, efficient energy use will be critical in creating the future energy landscape. Reduced waste heat generation is an important step toward future waste heat usage success. The purpose was to investigate numerous thermodynamic systems and model a new one that uses sCO2 cycles, as well as other possible combinations, to successfully and efficiently recover waste heat for electricity production, cooling effect or heating. An integrated CCHP (cooling, heating, and power) strategy is developed recognizing the energy cascade efficiency for low/medium-grade heat waste, which merges multiple cycles, a sCO2 cycle and an Organic Rankine cycle (ORC) and an Absorption refrigeration cycle (ARC), and the topping cycle of a gas turbine cycle. Under working conditions, the energy utilization factor increases by 4.5 percent, according to the data. Using parametric analysis, the impact of design elements on the main performance parameters of the suggested system is studied. The consequences of the system's main parameters were graphically depicted. The goal is to research several systems and construct a modern one that uses sCO2 cycles, as well as other conceivable combinations, to effectively and reliably recover waste heat. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh en_US
dc.subject Cycles; Combined cycles; novel ; parametric ; Thermodynamic analysis; python en_US
dc.title Thermodynamic Investigation of Combined Cycles And Polygeneration Systems With An Emphasis On Supercritical Carbon Dioxide Power Cycles en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics