dc.identifier.citation |
[1] S. A. Niederer, M. S. Sacks, M. Girolami, and K. Willcox, “Scaling digital twins from the artisanal to the industrial,” Nature Computational Science 2021 1:5, vol. 1, no. 5, pp. 313–320, May 2021, doi: 10.1038/s43588-021-00072-5. [2] M. P. Brenner, J. D. Eldredge, and J. B. Freund, “Perspective on machine learning for advancing fluid mechanics,” Physical Review Fluids, vol. 4, no. 10, p. 100501, Oct. 2019, doi: 10.1103/PhysRevFluids.4.100501. [3] O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional Networks for Biomedical Image Segmentation,” Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 9351, pp. 234–241, 2015, doi: 10.1007/978-3-319-24574-4_28. [4] “Attention is All you Need.” https://proceedings.neurips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aaAbstract.html (accessed Jun. 04, 2022). [5] “What is Computational Fluid Dynamics (CFD)? | SimScale | SimScale.” https://www.simscale.com/docs/simwiki/cfd-computational-fluid-dynamics/what-is-cfdcomputational-fluid-dynamics/ (accessed May 07, 2022). [6] J. L. Hess and A. M. O. Smith, “Calculation of Potential Flow About Arbitrary Bodies,” Progress in Aerospace Sciences, vol. 8, no. C, pp. 1–138, 1967, doi: 10.1016/0376- 0421(67)90003-6. [7] S. Samant et al., 25th AIAA Aerospace Sciences Meeting. American Institute of Aeronautics and Astronautics (AIAA), 1987. doi: 10.2514/6.1987-34. [8] R. Carmichael and L. Erickson, 14th Fluid and Plasma Dynamics Conference. American Institute of Aeronautics and Astronautics (AIAA), 1981. doi: 10.2514/6.1981-1255. [9] F. White, “Viscous Fluid Flow (McGraw-Hill Mechanical Engineering),” p. 640, 2005. [10] V. Thomée, “From finite differences to finite elements A short history of numerical analysis of partial differential equations,” Numerical Analysis: Historical Developments in the 20th Century, pp. 361–414, Jan. 2001, doi: 10.1016/B978-0-444-50617-7.50016-1. [11] J. Tu, G.-H. Yeoh, and C. Liu, Computational Fluid Dyanmics, vol. 53, no. 9. 2013. [12] A. Sharma, Introduction to Computational Fluid Dynamics. 2022. doi: 10.1007/978-3-030- 72884-7. [13] “SOLIDWORKS.” https://www.solidworks.com/ (accessed May 12, 2022). [14] “AutoCAD Software | Get Prices & Buy Official AutoCAD 2023 | Autodesk.” 55 https://www.autodesk.com/products/autocad/overview?term=1-YEAR&tab=subscription (accessed May 12, 2022). [15] “Introduction to Ansys DesignModeler CFD | Ansys Training.” https://www.ansys.com/trainingcenter/course-catalog/fluids/introduction-to-ansys-designmodeler (accessed May 12, 2022). [16] “Ansys SpaceClaim | 3D CAD Modeling Software.” https://www.ansys.com/products/3ddesign/ansys-spaceclaim (accessed May 12, 2022). [17] “What is a Mesh? | SimWiki Documentation | SimScale.” https://www.simscale.com/docs/simwiki/preprocessing/what-is-a-mesh/ (accessed May 12, 2022). [18] “Handbook of Grid Generation - Google Books.” https://books.google.com.bd/books?hl=en&lr=&id=fxABEAAAQBAJ&oi=fnd&pg=PR3&dq=T hompson,+J.+F.,+Soni,+B.+K.,+Wheatherill,+N.+P.,+%E2%80%9CHandbook+of+Grid+Genera tion%E2%80%9D,+1999&ots=0VUygSSuAr&sig=YinXFxQV5IUBAJKXuPM6wnZ2aY&redir_esc=y#v=onepage&q&f=false (accessed May 12, 2022). [19] “Quick overview of different ‘Boundary Conditions’ in CFD.” https://www.manchestercfd.co.uk/post/quick-overview-of-different-boundary-conditions-in-cfd (accessed May 12, 2022). [20] J. Gorman, S. Bhattacharyya, L. Cheng, and J. Abraham, “Turbulence Models Commonly Used in CFD,” Computational Fluid Dynamics [Working Title], Aug. 2021, doi: 10.5772/INTECHOPEN.99784. [21] R. Vinuesa and S. L. Brunton, “The Potential of Machine Learning to Enhance Computational Fluid Dynamics,” Oct. 2021, doi: 10.48550/arxiv.2110.02085. [22] J. Ling, A. Kurzawski, and J. Templeton, “Reynolds averaged turbulence modelling using deep neural networks with embedded invariance,” Journal of Fluid Mechanics, vol. 807, pp. 155–166, Nov. 2016, doi: 10.1017/JFM.2016.615. [23] K. Duraisamy, G. Iaccarino, and H. Xiao, “Turbulence Modeling in the Age of Data,” https://doi.org/10.1146/annurev-fluid-010518-040547, vol. 51, pp. 357–377, Jan. 2019, doi: 10.1146/ANNUREV-FLUID-010518-040547. [24] S. E. Ahmed, S. Pawar, O. San, A. Rasheed, T. Iliescu, and B. R. Noack, “On closures for reduced order models—A spectrum of first-principle to machine-learned avenues,” Physics of Fluids, vol. 33, no. 9, p. 091301, Sep. 2021, doi: 10.1063/5.0061577. [25] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowliswharan, “CFDNet: A deep learning-based accelerator for fluid simulations,” Proceedings of the International Conference on 56 Supercomputing, Jun. 2020, doi: 10.1145/3392717.3392772. [26] J. N. Kutz, “Deep learning in fluid dynamics,” Journal of Fluid Mechanics, vol. 814, pp. 1–4, Mar. 2017, doi: 10.1017/JFM.2016.803. [27] J. X. Wang, J. L. Wu, and H. Xiao, “Physics-informed machine learning approach for reconstructing Reynolds stress modeling discrepancies based on DNS data,” Physical Review Fluids, vol. 2, no. 3, p. 034603, Mar. 2017, doi: 10.1103/PHYSREVFLUIDS.2.034603/FIGURES/11/MEDIUM. [28] C. Jiang, R. Vinuesa, R. Chen, J. Mi, S. Laima, and H. Li, “An interpretable framework of datadriven turbulence modeling using deep neural networks,” Physics of Fluids, vol. 33, no. 5, p. 055133, May 2021, doi: 10.1063/5.0048909. [29] J. Weatheritt and R. Sandberg, “A novel evolutionary algorithm applied to algebraic modifications of the RANS stress–strain relationship,” Journal of Computational Physics, vol. 325, pp. 22–37, Nov. 2016, doi: 10.1016/J.JCP.2016.08.015. [30] J. L. Wu, H. Xiao, and E. Paterson, “Physics-informed machine learning approach for augmenting turbulence models: A comprehensive framework,” Physical Review Fluids, vol. 7, no. 3, p. 074602, Jul. 2018, doi: 10.1103/PHYSREVFLUIDS.3.074602/FIGURES/16/MEDIUM. [31] Y. Mi, M. Ishii, and L. H. Tsoukalas, “Flow regime identification methodology with neural networks and two-phase flow models,” Nuclear Engineering and Design, vol. 204, no. 1–3, pp. 87–100, Feb. 2001, doi: 10.1016/S0029-5493(00)00325-3. [32] A. Beck, D. Flad, and C.-D. Munz, “Deep neural networks for data-driven LES closure models,” Journal of Computational Physics, vol. 398, p. 108910, Dec. 2019, doi: 10.1016/j.jcp.2019.108910. [33] C. J. Lapeyre, A. Misdariis, N. Cazard, D. Veynante, and T. Poinsot, “Training convolutional neural networks to estimate turbulent sub-grid scale reaction rates,” Combustion and Flame, vol. 203, pp. 255–264, May 2019, doi: 10.1016/j.combustflame.2019.02.019. [34] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, “Automating turbulence modelling by multi-agent reinforcement learning,” Nature Machine Intelligence, vol. 3, no. 1, pp. 87–96, Jan. 2021, doi: 10.1038/s42256-020-00272-0. [35] Y. Guo, Y. Liu, A. Oerlemans, S. Lao, S. Wu, and M. S. Lew, “Deep learning for visual understanding: A review,” Neurocomputing, vol. 187, pp. 27–48, Apr. 2016, doi: 10.1016/J.NEUCOM.2015.09.116. [36] M. Ma, J. Lu, and G. Tryggvason, “Using statistical learning to close two-fluid multiphase flow equations for a simple bubbly system,” Physics of Fluids, vol. 27, no. 9, p. 092101, Sep. 2015, doi: 10.1063/1.4930004. 57 [37] F. Gibou, D. Hyde, and R. Fedkiw, “Sharp interface approaches and deep learning techniques for multiphase flows,” Journal of Computational Physics, vol. 380, pp. 442–463, Mar. 2019, doi: 10.1016/J.JCP.2018.05.031. [38] S. N. Skinner and H. Zare-Behtash, “State-of-the-art in aerodynamic shape optimisation methods,” Applied Soft Computing, vol. 62, pp. 933–962, Jan. 2018, doi: 10.1016/J.ASOC.2017.09.030. [39] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations for partial differential equations,” Proc Natl Acad Sci U S A, vol. 116, no. 31, pp. 15344–15349, Jul. 2019, doi: 10.1073/PNAS.1814058116. [40] J. Jeon and S. J. Kim, “FVM Network to Reduce Computational Cost of CFD Simulation,” International Journal of Energy Research, May 2021, doi: 10.1002/er.7879. [41] B. Stevens and T. Colonius, “FiniteNet: A Fully Convolutional LSTM Network Architecture for Time-Dependent Partial Differential Equations,” Feb. 2020, doi: 10.48550/arxiv.2002.03014. [42] K. Fukami, Y. Nabae, K. Kawai, and K. Fukagata, “Synthetic turbulent inflow generator using machine learning,” Physical Review Fluids, vol. 4, no. 6, p. 064603, Jun. 2019, doi: 10.1103/PHYSREVFLUIDS.4.064603/FIGURES/11/MEDIUM. [43] Y. Morita, S. Rezaeiravesh, N. Tabatabaei, R. Vinuesa, K. Fukagata, and P. Schlatter, “Applying Bayesian optimization with Gaussian process regression to computational fluid dynamics problems,” Journal of Computational Physics, vol. 449, p. 110788, Jan. 2022, doi: 10.1016/J.JCP.2021.110788. [44] W. Tang et al., “Study on a Poisson’s equation solver based on deep learning technique,” 2017 IEEE Electrical Design of Advanced Packaging and Systems Symposium, EDAPS 2017, vol. 2018-January, pp. 1–3, Jan. 2018, doi: 10.1109/EDAPS.2017.8277017. [45] A. G. Ozbay, A. Hamzehloo, S. Laizet, P. Tzirakis, G. Rizos, and B. Schuller, “Poisson CNN: Convolutional neural networks for the solution of the Poisson equation on a Cartesian mesh,” Data-Centric Engineering, vol. 2, no. 6, Jun. 2021, doi: 10.1017/DCE.2021.7. [46] R. Vinuesa, S. M. Hosseini, A. Hanifi, D. S. Henningson, and P. Schlatter, “Pressure-Gradient Turbulent Boundary Layers Developing Around a Wing Section,” Flow, Turbulence and Combustion, vol. 99, no. 3–4, pp. 613–641, Dec. 2017, doi: 10.1007/S10494-017-9840-Z. [47] G. Novati, H. L. de Laroussilhe, and P. Koumoutsakos, “Automating turbulence modelling by multi-agent reinforcement learning,” Nature Machine Intelligence 2021 3:1, vol. 3, no. 1, pp. 87– 96, Jan. 2021, doi: 10.1038/s42256-020-00272-0. [48] R. Vinuesa and S. L. Brunton, “The Potential of Machine Learning to Enhance Computational Fluid Dynamics,” pp. 1–13, 2021, [Online]. Available: http://arxiv.org/abs/2110.02085 58 [49] H. Eivazi, S. le Clainche, S. Hoyas, and R. Vinuesa, “Towards extraction of orthogonal and parsimonious non-linear modes from turbulent flows,” Sep. 2021, doi: 10.48550/arxiv.2109.01514. [50] L. Guastoni et al., “Convolutional-network models to predict wall-bounded turbulence from wall quantities,” Journal of Fluid Mechanics, vol. 928, Dec. 2021, doi: 10.1017/JFM.2021.812. [51] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, “Learning data-driven discretizations for partial differential equations,” Proc Natl Acad Sci U S A, vol. 116, no. 31, pp. 15344–15349, Jul. 2019, doi: 10.1073/PNAS.1814058116. [52] B. Stevens and T. Colonius, “Enhancement of shock-capturing methods via machine learning,” Theoretical and Computational Fluid Dynamics, vol. 34, no. 4, pp. 483–496, Aug. 2020, doi: 10.1007/S00162-020-00531-1/FIGURES/12. [53] C. W. Rowley and S. T. M. Dawson, “Model Reduction for Flow Analysis and Control,” http://dx.doi.org/10.1146/annurev-fluid-010816-060042, vol. 49, pp. 387–417, Jan. 2017, doi: 10.1146/ANNUREV-FLUID-010816-060042. [54] K. Taira et al., “Modal analysis of fluid flows: Applications and outlook,” AIAA Journal, vol. 58, no. 3, pp. 998–1022, Oct. 2020, doi: 10.2514/1.J058462/ASSET/IMAGES/LARGE/FIGURE19.JPEG. [55] “The structure of inhomogeneous turbulent flows | CiNii Research.” https://cir.nii.ac.jp/crid/1571980075051475712 (accessed May 14, 2022). [56] V. Sekar, Q. Jiang, C. Shu, and B. C. Khoo, “Fast flow field prediction over airfoils using deep learning approach,” Physics of Fluids, vol. 31, no. 5, p. 057103, May 2019, doi: 10.1063/1.5094943. [57] “Airfoil data information.” http://airfoiltools.com/airfoil/ (accessed May 11, 2022). [58] P. R. Spalart and S. R. Allmaras, “One-equation turbulence model for aerodynamic flows,” Recherche aerospatiale, no. 1, pp. 5–21, 1994, doi: 10.2514/6.1992-439. [59] S. M. Nazia Fathima, R. Tamilselvi, M. Parisa Beham, and D. Sabarinathan, “Diagnosis of Osteoporosis using modified U-net architecture with attention unit in DEXA and X-ray images,” Journal of X-Ray Science and Technology, vol. 28, no. 5, pp. 953–973, Jan. 2020, doi: 10.3233/XST-200692. [60] H. Kim, J. Kim, S. Won, and C. Lee, “Unsupervised deep learning for super-resolution reconstruction of turbulence,” Journal of Fluid Mechanics, vol. 910, 2021, doi: 10.1017/JFM.2020.1028. [61] A. Güemes, S. Discetti, A. Ianiro, B. Sirmacek, H. Azizpour, and R. Vinuesa, “From coarse wall measurements to turbulent velocity fields through deep learning,” Physics of Fluids, vol. 33, no. 59 7, p. 075121, Jul. 2021, doi: 10.1063/5.0058346. [62] K. Fukami, T. Nakamura, and K. Fukagata, “Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data,” Physics of Fluids, vol. 32, no. 9, p. 095110, Sep. 2020, doi: 10.1063/5.0020721. [63] “The structure of inhomogeneous turbulent flows | CiNii Research.” https://cir.nii.ac.jp/crid/1571980075051475712 (accessed May 14, 2022). [64] R. Wang, R. Walters, and R. Yu, “Incorporating Symmetry into Deep Dynamics Models for Improved Generalization,” Feb. 2020, doi: 10.48550/arxiv.2002.03061. [65] J. C. Loiseau and S. L. Brunton, “Constrained sparse Galerkin regression,” Journal of Fluid Mechanics, vol. 838, pp. 42–67, Mar. 2018, doi: 10.1017/JFM.2017.823. [66] H. Frezat, G. Balarac, J. le Sommer, R. Fablet, and R. Lguensat, “Physical invariance in neural networks for subgrid-scale scalar flux modeling,” Physical Review Fluids, vol. 6, no. 2, p. 024607, Feb. 2021, doi: 10.1103/PHYSREVFLUIDS.6.024607/FIGURES/17/MEDIUM. [67] O. Mesnard and L. A. Barba, “Reproducible and Replicable Computational Fluid Dynamics: It’s Harder Than You Think,” Computing in Science and Engineering, vol. 19, no. 4, pp. 44–55, 2017, doi: 10.1109/MCSE.2017.3151254. [68] L. A. Barba, “The hard road to reproducibility,” Science (1979), vol. 354, no. 6308, p. 142, Oct. 2016, doi: 10.1126/SCIENCE.354.6308.142/ASSET/35E106D4-FB4C-41F4-A7AEEDEFCD081B90/ASSETS/GRAPHIC/354_142_F1.JPEG |
en_US |