| Login
dc.contributor.author | Nuhash, Mashrur Muntasir | |
dc.contributor.author | Alam, Md. Ibthisum | |
dc.contributor.author | Zihad, Ananta | |
dc.date.accessioned | 2023-03-30T08:47:46Z | |
dc.date.available | 2023-03-30T08:47:46Z | |
dc.date.issued | 2022-05-31 | |
dc.identifier.citation | [1] A. A. Hawwash, A. K. Abdel Rahman, S. A. Nada, and S. Ookawara, “Numerical Investigation and Experimental Verification of Performance Enhancement of Flat Plate Solar Collector Using Nanofluids,” Appl. Therm. Eng., vol. 130, pp. 363–374, 2018, doi: 10.1016/j.applthermaleng.2017.11.027. [2] Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009, doi: 10.1016/j.powtec.2009.07.025. [3] W. Yu, D. M. France, J. L. Routbort, and S. U. S. Choi, “Review and comparison of nanofluid thermal conductivity and heat transfer enhancements,” Heat Transf. Eng., vol. 29, no. 5, pp. 432–460, 2008, doi: 10.1080/01457630701850851. [4] L. H. Kumar, S. N. Kazi, H. H. Masjuki, M. N. M. Zubir, A. Jahan, and C. Bhinitha, “Energy, exergy and economic analysis of liquid flat-plate solar collector using green covalent functionalized graphene nanoplatelets,” Appl. Therm. Eng., vol. 192, no. March, p. 116916, 2021, doi: 10.1016/j.applthermaleng.2021.116916. [5] F. Cruz-Peragon, J. M. Palomar, P. J. Casanova, M. P. Dorado, and F. ManzanoAgugliaro, “Characterization of solar flat plate collectors,” Renew. Sustain. Energy Rev., vol. 16, no. 3, pp. 1709–1720, 2012, doi: 10.1016/j.rser.2011.11.025. [6] K. M. Pandey and R. Chaurasiya, “A review on analysis and development of solar flat plate collector,” Renew. Sustain. Energy Rev., vol. 67, pp. 641–650, 2017, doi: 10.1016/j.rser.2016.09.078. [7] E. Vengadesan and R. Senthil, “A review on recent development of thermal performance enhancement methods of flat plate solar water heater,” Sol. Energy, vol. 206, no. May, pp. 935–961, 2020, doi: 10.1016/j.solener.2020.06.059. [8] N. Ikmal, S. Azha, H. Hussin, and M. S. Nasif, “Thermal Performance Enhancement in Flat Plate Solar Collector Solar Water Heater: A Review,” Processes, 2020, doi: https://doi.org/10.3390/pr8070756. [9] M. Edalatpour and J. P. Solano, “Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection,” Int. J. Therm. Sci., vol. 118, pp. 397–409, 2017, doi: 10.1016/j.ijthermalsci.2017.05.004. 72 [10] F. Hossain, M. R. Karim, and A. A. Bhuiyan, “A review on recent advancements of the usage of nano fluid in hybrid photovoltaic/thermal (PV/T) solar systems,” Renew. Energy, vol. 188, pp. 114–131, 2022, doi: 10.1016/j.renene.2022.01.116. [11] M. Sheikholeslami, S. A. Farshad, Z. Ebrahimpour, and Z. Said, “Recent progress on flat plate solar collectors and photovoltaic systems in the presence of nanofluid: A review,” J. Clean. Prod., vol. 293, p. 126119, 2021, doi: 10.1016/j.jclepro.2021.126119. [12] S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Performance augmentation in flat plate solar collector using MgO/water nanofluid,” Energy Convers. Manag., vol. 124, pp. 607–617, 2016, doi: 10.1016/j.enconman.2016.07.007. [13] T. Yousefi, F. Veysi, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flatplate solar collectors,” Renew. Energy, vol. 39, no. 1, pp. 293–298, 2012, doi: 10.1016/j.renene.2011.08.056. [14] S. A. Sakhaei and M. S. Valipour, “Performance enhancement analysis of The flat plate collectors: A comprehensive review,” Renew. Sustain. Energy Rev., vol. 102, no. May 2018, pp. 186–204, 2019, doi: 10.1016/j.rser.2018.11.014. [15] S. K. Verma and A. K. Tiwari, “Progress of nanofluid application in solar collectors: A review,” Energy Convers. Manag., vol. 100, pp. 324–346, 2015, doi: 10.1016/j.enconman.2015.04.071. [16] R. B. Ganvir, P. V. Walke, and V. M. Kriplani, “Heat transfer characteristics in nanofluid—A review,” Renew. Sustain. Energy Rev., vol. 75, no. October, pp. 451–460, 2017, doi: 10.1016/j.rser.2016.11.010. [17] R. Dobriyal, P. Negi, N. Sengar, and D. B. Singh, “A brief review on solar flat plate collector by incorporating the effect of nanofluid,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1653–1658, 2020, doi: 10.1016/j.matpr.2019.11.294. [18] R. Dobriyal, P. Negi, N. Sengar, and D. B. Singh, “A brief review on solar flat plate collector by incorporating the effect of nanofluid,” Mater. Today Proc., vol. 21, no. xxxx, pp. 1653–1658, 2020, doi: 10.1016/j.matpr.2019.11.294. [19] H. K. Gupta, G. Das Agrawal, and J. Mathur, “An experimental investigation of a low temperature Al2O3-H2O nanofluid based direct absorption solar collector,” Sol. Energy, vol. 118, pp. 390–396, 2015, doi: 10.1016/j.solener.2015.04.041. [20] S. S. Khaleduzzaman, M. R. Sohel, R. Saidur, and J. Selvaraj, “Stability of 73 Al2O3-water nanofluid for electronics cooling system,” Procedia Eng., vol. 105, no. August, pp. 406–411, 2015, doi: 10.1016/j.proeng.2015.05.026. [21] M. Mirzaei, S. M. S. Hosseini, and A. M. Moradi Kashkooli, “Assessment of Al2O3 nanoparticles for the optimal operation of the flat plate solar collector,” Appl. Therm. Eng., vol. 134, no. February 2017, pp. 68–77, 2018, doi: 10.1016/j.applthermaleng.2018.01.104. [22] M. A. Sharafeldin and G. Gróf, “Experimental investigation of flat plate solar collector using CeO2-water nanofluid,” Energy Convers. Manag., vol. 155, no. August 2017, pp. 32–41, 2018, doi: 10.1016/j.enconman.2017.10.070. [23] H. J. Jouybari, M. E. Nimvari, and S. Saedodin, “Thermal performance evaluation of a nanofluid‐based flat‐plate solar collector: An experimental study and analytical modeling,” J. Therm. Anal. Calorim., vol. 137, no. 5, pp. 1757– 1774, 2019, doi: 10.1007/s10973-019-08077-z. [24] P. Michael Joseph Stalin, T. V. Arjunan, M. M. Matheswaran, H. Dolli, and N. Sadanandam, “Energy, economic and environmental investigation of a flat plate solar collector with CeO2/water nanofluid,” J. Therm. Anal. Calorim., vol. 139, no. 5, pp. 3219–3233, 2020, doi: 10.1007/s10973-019-08670-2. [25] M. Moravej et al., “Enhancing the efficiency of a symmetric flat-plate solar collector via the use of rutile TiO2-water nanofluids,” Sustain. Energy Technol. Assessments, vol. 40, no. June, 2020, doi: 10.1016/j.seta.2020.100783. [26] L. S. Sundar, A. H. Misganaw, M. K. Singh, A. M. B. Pereira, and A. C. M. Sousa, “Efficiency, energy and economic analysis of twisted tape inserts in a thermosyphon solar flat plate collector with Cu nanofluids,” Renew. Energy Focus, vol. 35, no. 00, pp. 10–31, 2020, doi: 10.1016/j.ref.2020.06.004. [27] S. Choudhary, A. Sachdeva, and P. Kumar, “Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector,” Renew. Energy, vol. 152, pp. 1160–1170, 2020, doi: 10.1016/j.renene.2020.01.142. [28] S. Choudhary, A. Sachdeva, and P. Kumar, “Investigation of the stability of MgO nanofluid and its effect on the thermal performance of flat plate solar collector,” Renew. Energy, vol. 147, pp. 1801–1814, 2020, doi: 10.1016/j.renene.2019.09.126. [29] E. C. Okonkwo, I. Wole-Osho, D. Kavaz, M. Abid, and T. Al-Ansari, “Thermodynamic evaluation and optimization of a flat plate collector operating with alumina and iron mono and hybrid nanofluids,” Sustain. Energy Technol. 74 Assessments, vol. 37, no. January, p. 100636, 2020, doi: 10.1016/j.seta.2020.100636. [30] S. Choudhary, A. Sachdeva, and P. Kumar, “Time-based analysis of stability and thermal efficiency of flat plate solar collector using iron oxide nanofluid,” Appl. Therm. Eng., vol. 183, p. 115931, 2021, doi: 10.1016/j.applthermaleng.2020.115931. [31] K. Farhana, K. Kadirgama, H. A. Mohammed, D. Ramasamy, M. Samykano, and R. Saidur, “Analysis of efficiency enhancement of flat plate solar collector using crystal nano-cellulose (CNC) nanofluids,” Sustain. Energy Technol. Assessments, vol. 45, no. February, 2021, doi: 10.1016/j.seta.2021.101049. [32] A. M. Alklaibi, L. S. Sundar, and A. C. M. Sousa, “Experimental analysis of exergy efficiency and entropy generation of diamond/water nanofluids flow in a thermosyphon flat plate solar collector,” Int. Commun. Heat Mass Transf., vol. 120, p. 105057, 2021, doi: 10.1016/j.icheatmasstransfer.2020.105057. [33] V. P. Kalbande, P. V. Walke, K. Rambhad, Y. Nandanwar, and M. Mohan, “Performance evaluation of energy storage system coupled with flat plate solar collector using hybrid nanofluid of CuO+Al2O3/water,” J. Phys. Conf. Ser., vol. 1913, no. 1, 2021, doi: 10.1088/1742-6596/1913/1/012067. [34] M. Ghalandari, A. Maleki, A. Haghighi, M. Safdari Shadloo, M. Alhuyi Nazari, and I. Tlili, “Applications of nanofluids containing carbon nanotubes in solar energy systems: A review,” J. Mol. Liq., vol. 313, p. 113476, 2020, doi: 10.1016/j.molliq.2020.113476. [35] T. Yousefi, F. Veisy, E. Shojaeizadeh, and S. Zinadini, “An experimental investigation on the effect of MWCNT-H 2O nanofluid on the efficiency of flatplate solar collectors,” Exp. Therm. Fluid Sci., vol. 39, pp. 207–212, 2012, doi: 10.1016/j.expthermflusci.2012.01.025. [36] R. Das, S. B. Abd Hamid, M. E. Ali, A. F. Ismail, M. S. M. Annuar, and S. Ramakrishna, “Multifunctional carbon nanotubes in water treatment: The present, past and future,” Desalination, vol. 354, no. November, pp. 160–179, 2014, doi: 10.1016/j.desal.2014.09.032. [37] D. Anin Vincely and E. Natarajan, “Experimental investigation of the solar FPC performance using graphene oxide nanofluid under forced circulation,” Energy Convers. Manag., vol. 117, pp. 1–11, 2016, doi: 10.1016/j.enconman.2016.03.015. 75 [38] M. Vakili, S. M. Hosseinalipour, S. Delfani, S. Khosrojerdi, and M. Karami, “Experimental investigation of graphene nanoplatelets nanofluid-based volumetric solar collector for domestic hot water systems,” Sol. Energy, vol. 131, pp. 119–130, 2016, doi: 10.1016/j.solener.2016.02.034. [39] F. E. B. Bioucas, S. I. C. Vieira, M. J. V. Lourenço, F. J. V. Santos, and C. A. Nieto de Castro, “Performance of heat transfer fluids with nanographene in a pilot solar collector,” Sol. Energy, vol. 172, no. May, pp. 171–176, 2018, doi: 10.1016/j.solener.2018.05.040. [40] M. Eltaweel and A. A. Abdel-Rehim, “Energy and exergy analysis of a thermosiphon and forced-circulation flat-plate solar collector using MWCNT/Water nanofluid,” Case Stud. Therm. Eng., vol. 14, no. February, p. 100416, 2019, doi: 10.1016/j.csite.2019.100416. [41] N. Akram et al., “An experimental investigation on the performance of a flatplate solar collector using eco-friendly treated graphene nanoplatelets–water nanofluids,” J. Therm. Anal. Calorim., vol. 138, no. 1, pp. 609–621, 2019, doi: 10.1007/s10973-019-08153-4. [42] O. A. Alawi, H. Mohamed Kamar, A. R. Mallah, S. N. Kazi, and N. A. C. Sidik, “Thermal efficiency of a flat-plate solar collector filled with Pentaethylene Glycol-Treated Graphene Nanoplatelets: An experimental analysis,” Sol. Energy, vol. 191, no. August, pp. 360–370, 2019, doi: 10.1016/j.solener.2019.09.011. [43] S. Gupta et al., “Comparative performance analysis of flat plate solar collectors with and without aluminium oxide-based nano-fluid,” Mater. Today Proc., vol. 46, no. xxxx, pp. 5378–5383, 2020, doi: 10.1016/j.matpr.2020.08.797. [44] W. S. Sarsam, S. N. Kazi, and A. Badarudin, “Thermal performance of a flatplate solar collector using aqueous colloidal dispersions of graphene nanoplatelets with different specific surface areas,” Appl. Therm. Eng., vol. 172, no. February, p. 115142, 2020, doi: 10.1016/j.applthermaleng.2020.115142. [45] O. A. Hussein, K. Habib, A. S. Muhsan, R. Saidur, O. A. Alawi, and T. K. Ibrahim, “Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid,” Sol. Energy, vol. 204, no. April, pp. 208–222, 2020, doi: 10.1016/j.solener.2020.04.034. [46] L. A. Tagliafico, F. Scarpa, and M. De Rosa, “Dynamic thermal models and CFD analysis for flat-plate thermal solar collectors - A review,” Renew. Sustain. 76 Energy Rev., vol. 30, pp. 526–537, 2014, doi: 10.1016/j.rser.2013.10.023. [47] S. K. Verma, A. K. Tiwari, and D. S. Chauhan, “Experimental evaluation of flat plate solar collector using nanofluids,” Energy Convers. Manag., vol. 134, pp. 103–115, 2017, doi: 10.1016/j.enconman.2016.12.037. [48] Y. Tong, X. Chi, W. Kang, and H. Cho, “Comparative investigation of efficiency sensitivity in a flat plate solar collector according to nanofluids,” Appl. Therm. Eng., vol. 174, no. April, 2020, doi: 10.1016/j.applthermaleng.2020.115346. [49] M. Faizal, R. Saidur, S. Mekhilef, and M. A. Alim, “Energy, economic and environmental analysis of metal oxides nanofluid for flat-plate solar collector,” Energy Convers. Manag., vol. 76, pp. 162–168, 2013, doi: 10.1016/j.enconman.2013.07.038. [50] R. Nasrin, M. A. Alim, and S. R. Ahmed, “Comparative study between 2D and 3D modeling of nanofluid filled flat plate solar collector,” Int. J. Heat Technol., vol. 34, no. 3, pp. 527–536, 2016, doi: 10.18280/ijht.340326. [51] E. Farajzadeh, S. Movahed, and R. Hosseini, “Experimental and numerical investigations on the effect of Al2O3/TiO2[sbnd]H2O nanofluids on thermal efficiency of the flat plate solar collector,” Renew. Energy, vol. 118, pp. 122– 130, 2018, doi: 10.1016/j.renene.2017.10.102. [52] N. K. C. Sint, I. A. Choudhury, H. H. Masjuki, and H. Aoyama, “Theoretical analysis to determine the efficiency of a CuO-water nanofluid based-flat plate solar collector for domestic solar water heating system in Myanmar,” Sol. Energy, vol. 155, pp. 608–619, 2017, doi: 10.1016/j.solener.2017.06.055. [53] S. Shamshirgaran, M. K. Assadi, H. H. Al-Kayiem, and K. V. Sharma, “Energetic and exergetic performance of a solar flat-plate collector working with cu nanofluid,” J. Sol. Energy Eng. Trans. ASME, vol. 140, no. 3, 2018, doi: 10.1115/1.4039018. [54] S. A. Farshad, M. Sheikholeslami, S. H. Hosseini, A. Shafee, and Z. Li, “Nanofluid turbulent forced convection through a solar flat plate collector with Al2O3 nanoparticles,” Microsyst. Technol., vol. 25, no. 11, pp. 4237–4247, 2019, doi: 10.1007/s00542-019-04430-2. [55] M. R. Saffarian, M. Moravej, and M. H. Doranehgard, “Heat transfer enhancement in a flat plate solar collector with different flow path shapes using nanofluid,” Renew. Energy, vol. 146, pp. 2316–2329, 2020, doi: 10.1016/j.renene.2019.08.081. 77 [56] S. P. Aghili Yegane and A. Kasaeian, “Thermal performance assessment of a flat-plate solar collector considering porous media, hybrid nanofluid and magnetic field effects,” J. Therm. Anal. Calorim., vol. 141, no. 5, pp. 1969–1980, 2020, doi: 10.1007/s10973-020-09710-y. [57] A. Allouhi and M. Benzakour Amine, “Heat pipe flat plate solar collectors operating with nanofluids,” Sol. Energy Mater. Sol. Cells, vol. 219, no. October 2020, p. 110798, 2021, doi: 10.1016/j.solmat.2020.110798. [58] M. Bezaatpour and H. Rostamzadeh, “Simultaneous energy storage enhancement and pressure drop reduction in flat plate solar collectors using rotary pipes with nanofluid,” Energy Build., vol. 239, p. 110855, 2021, doi: 10.1016/j.enbuild.2021.110855. [59] M. Bezaatpour and H. Rostamzadeh, “Design and evaluation of flat plate solar collector equipped with nanofluid, rotary tube, and magnetic field inducer in a cold region,” Renew. Energy, vol. 170, pp. 574–586, 2021, doi: 10.1016/j.renene.2021.02.001. [60] H. Nabi, M. Pourfallah, M. Gholinia, and O. Jahanian, “Increasing heat transfer in flat plate solar collectors using various forms of turbulence-inducing elements and CNTs-CuO hybrid nanofluids,” Case Stud. Therm. Eng., vol. 33, no. February, p. 101909, 2022, doi: 10.1016/j.csite.2022.101909. [61] A. Fattahi, “Numerical simulation of a solar collector equipped with a twisted tape and containing a hybrid nanofluid,” Sustain. Energy Technol. Assessments, vol. 45, no. April, p. 101200, 2021, doi: 10.1016/j.seta.2021.101200. [62] J. F. Cerón, J. Pérez-García, J. P. Solano, A. García, and R. Herrero-Martín, “A coupled numerical model for tube-on-sheet flat-plate solar liquid collectors. Analysis and validation of the heat transfer mechanisms,” Appl. Energy, vol. 140, pp. 275–287, 2015, doi: 10.1016/j.apenergy.2014.11.069. [63] L. S. Sundar, M. K. Singh, V. Punnaiah, and A. C. M. Sousa, “Experimental investigation of Al2O3/water nanofluids on the effectiveness of solar flat-plate collectors with and without twisted tape inserts,” Renew. Energy, vol. 119, pp. 820–833, 2018, doi: 10.1016/j.renene.2017.10.056. [64] S. K. Verma, A. K. Tiwari, S. Tiwari, and D. S. Chauhan, “Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid,” Sol. Energy, vol. 167, no. April, pp. 231–241, 2018, doi: 10.1016/j.solener.2018.04.017. 78 [65] R. Sadri et al., “Study of environmentally friendly and facile functionalization of graphene nanoplatelet and its application in convective heat transfer,” Energy Convers. Manag., vol. 150, pp. 26–36, 2017, doi: 10.1016/j.enconman.2017.07.036. [66] Z. Huang, Z. Y. Li, and W. Q. Tao, “Numerical study on combined natural and forced convection in the fully-developed turbulent region for a horizontal circular tube heated by non-uniform heat flux,” Appl. Energy, vol. 185, pp. 2194–2208, 2017, doi: 10.1016/j.apenergy.2015.11.066. [67] Y. Cao, H. Ayed, M. Hashemian, A. Issakhov, F. Jarad, and M. Wae-hayee, “Inducing swirl flow inside the pipes of flat-plate solar collector by using multiple nozzles for enhancing thermal performance,” Renew. Energy, vol. 180, pp. 1344–1357, 2021, doi: 10.1016/j.renene.2021.09.018. [68] A. L. Antony, S. P. Shetty, N. Madhwesh, N. Yagnesh Sharma, and K. Vasudeva Karanth, “Influence of stepped cylindrical turbulence generators on the thermal enhancement factor of a flat plate solar air heater,” Sol. Energy, vol. 198, no. September 2019, pp. 295–310, 2020, doi: 10.1016/j.solener.2020.01.065. [69] E. Vengadesan and R. Senthil, “A review on recent developments in thermal performance enhancement methods of flat plate solar air collector,” Renew. Sustain. Energy Rev., vol. 134, no. September, p. 110315, 2020, doi: 10.1016/j.rser.2020.110315. [70] Y. I. C. Bock Choon Pak, “Hydrodynamic and Heat Transfer Study of Dispersed Fluids With Submicron Metallic Oxide,” Exp. Heat Transf. A J. , Therm. Energy Transp. , Storage , Convers., no. January 2013, pp. 37–41, 2013. [71] Y. Xuan and W. Roetzel, “Conceptions for heat transfer correlation of nanofluids,” Int. J. Heat Mass Transf., vol. 43, no. 19, pp. 3701–3707, 2000, doi: 10.1016/S0017-9310(99)00369-5. [72] I. M. Shahrul, I. M. Mahbubul, S. S. Khaleduzzaman, R. Saidur, and M. F. M. Sabri, “A comparative review on the specific heat of nanofluids for energy perspective,” Renew. Sustain. Energy Rev., vol. 38, pp. 88–98, 2014, doi: 10.1016/j.rser.2014.05.081. [73] F. C. Li, J. C. Yang, W. W. Zhou, Y. R. He, Y. M. Huang, and B. C. Jiang, “Experimental study on the characteristics of thermal conductivity and shear viscosity of viscoelastic-fluid-based nanofluids containing multiwalled carbon nanotubes,” Thermochim. Acta, vol. 556, pp. 47–53, 2013, doi: 79 10.1016/j.tca.2013.01.023. [74] M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers. Manag., vol. 52, no. 1, pp. 789–793, 2011, doi: 10.1016/j.enconman.2010.06.072. [75] N. Akram et al., “Experimental investigations of the performance of a flat-plate solar collector using carbon and metal oxides based nanofluids,” Energy, vol. 227, 2021, doi: 10.1016/j.energy.2021.120452. [76] Z. Said, R. Saidur, M. A. Sabiha, A. Hepbasli, and N. A. Rahim, “Energy and exergy efficiency of a flat plate solar collector using pH treated Al2O3 nanofluid,” J. Clean. Prod., vol. 112, pp. 3915–3926, 2016, doi: 10.1016/j.jclepro.2015.07.115. [77] Z. Said, R. Saidur, M. A. Sabiha, N. A. Rahim, and M. R. Anisur, “Thermophysical properties of Single Wall Carbon Nanotubes and its effect on exergy efficiency of a flat plate solar collector,” Sol. Energy, vol. 115, pp. 757– 769, 2015, doi: 10.1016/j.solener.2015.02.037. [78] M. H. Ahmadi, A. Mirlohi, M. Alhuyi Nazari, and R. Ghasempour, “A review of thermal conductivity of various nanofluids,” J. Mol. Liq., vol. 265, no. 2017, pp. 181–188, 2018, doi: 10.1016/j.molliq.2018.05.124. [79] Y. Xuan and Q. Li, “Heat transfer enhancement of nanofluids,” Int. J. Heat Fluid Flow, vol. 21, no. 1, pp. 58–64, 2000, doi: 10.1016/S0142-727X(99)00067-3. [80] P. C. Mishra, S. Mukherjee, S. K. Nayak, and A. Panda, “A brief review on viscosity of nanofluids,” Int. Nano Lett., vol. 4, no. 4, pp. 109–120, 2014, doi: 10.1007/s40089-014-0126-3. [81] K. Bashirnezhad et al., “Viscosity of nanofluids: A review of recent experimental studies,” Int. Commun. Heat Mass Transf., vol. 73, pp. 114–123, 2016, doi: 10.1016/j.icheatmasstransfer.2016.02.005. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1799 | |
dc.description | Supervised by Dr. Md. Rezwanul Karim, Associate Professor, This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical and Production Engineering, 2022. | en_US |
dc.description.abstract | The constant rise in global temperature and the need to reduce fossil fuel consumption has made renewable energy sources desirable, especially solar energy systems. Flat plate solar collector (FPSC) is one of the most established solar energy technologies for lower to medium heat applications. FPSC has a wide range of implications because of their beneficiary of simple structure and low maintenance although the low thermal efficiency of the conventional system hinders their further development. The utilization of nanofluid as the heat transfer fluid in FPSC has been a popular trend for the last decades and significant improvements in the performance using this technique have been observed. Due to their better thermo-physical properties, carbon-based nanofluid possesses greater prospects compared to metal-based nanofluid. However, this subject matter has not been explored further yet. This study develops a CFD model to assess the performance of a metal-based based nanofluid (Al2O3/water) and two carbon-based nanofluids (SWCNT/water and MWCNT/water) at volume concentrations up to 1% in a simple FPSC. Based on thermal-hydraulic properties, a detailed comparison among these three nanofluids is made. The observation was, that, with the elevation of Reynolds number (Re) and volume concentrations the outlet temperature decreases and among the nanofluids Al2O3/water showed the lowest reduction. The types of nanofluids do not influence the friction factor. It was noticed that the friction factor decreases with the increase of Re while higher volume concentration necessitates greater pumping power. SWCNT/water nanofluid showed the best results in terms of heat transfer coefficient and Nusselt number followed by Al2O3/water and MWCNT/water. For enhancing both the Re and volume concentration the heat transfer coefficient is boosted. But for the Nu, the values rose with the higher Re while it deteriorated with the increasing volume concentration. The highest Stanton number was achieved for greater volume concentration and smaller Re. In the case of the thermal-hydraulic performance parameter (THPP) the values increased with higher volume concentrations although the Re had a negligible impact on it. The analysis indicates the SWCNT/water is the best performing nanofluid but requires a higher pumping power. This study concludes that carbon-based nanofluid outperforms metal-based nanofluid at both inlet temperatures of 303K and 313K. These findings from the study will be beneficial in future design of efficient solar thermal applications. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh | en_US |
dc.subject | Flat plate solar collector, Al2O3/water nanofluid, SWCNT/water nanofluid, MWCNT/water nanofluid, Thermal-hydraulic performance | en_US |
dc.title | Thermal and Hydraulic Performance Comparison of Carbon Based and Metal Based Nano fluids in Flat Plate Solar Collector: A CFD Analysis | en_US |
dc.type | Thesis | en_US |