CFD Modelling of H-Darrieus Vertical Axis Wind Turbine

Show simple item record

dc.contributor.author Tonni, Morium Mannan
dc.date.accessioned 2023-03-31T06:36:39Z
dc.date.available 2023-03-31T06:36:39Z
dc.date.issued 2022-05-31
dc.identifier.citation [1] M. N. Uddin, M. A. Rahman, M. Mofijur, J. Taweekun, K. Techato, and M. G. Rasul, “Renewable energy in Bangladesh: Status and prospects,” Energy Procedia, vol. 160, pp. 655–661, 2019, doi: 10.1016/j.egypro.2019.02.218. [2] P. Action, Poor people’s energy outlook 2016: National energy access planning from the bottom up. Practical Action Publishing, 2016. [3] G. Plan, “Power Division, Ministry of Power, Energy and Mineral Resources, Government of the people‘s republic of Bangladesh.” 2018. [4] Bangladesh Power Development Board, “Annual Report 2020-21,” 2021. [Online]. Available: https://bdcom.bpdb.gov.bd/bpdb_new/resourcefile/annualreports/annualreport_1640756525_ Annual_Report_2020-2021_latest.pdf. [5] Z. Tan, H. Zhang, J. Xu, J. Wang, C. Yu, and J. Zhang, “Photovoltaic power generation in China: Development potential, benefits of energy conservation and emission reduction,” J. Energy Eng., vol. 138, no. 2, pp. 73–86, 2012. [6] S. Ahmed, M. T. Islam, M. A. Karim, and N. M. Karim, “Exploitation of renewable energy for sustainable development and overcoming power crisis in Bangladesh,” Renew. Energy, vol. 72, pp. 223–235, 2014, doi: 10.1016/j.renene.2014.07.003. [7] F. Ahmed, A. Q. Al Amin, M. Hasanuzzaman, and R. Saidur, “Alternative energy resources in Bangladesh and future prospect,” Renew. Sustain. Energy Rev., vol. 25, no. September, pp. 698–707, 2013, doi: 10.1016/j.rser.2013.05.008. [8] H. Akter, H. O. R. Howlader, A. Nakadomari, M. R. Islam, A. Y. Saber, and T. Senjyu, “A Short Assessment of Renewable Energy for Optimal Sizing of 100% Renewable Energy Based Microgrids in Remote Islands of Developing Countries: A Case Study in Bangladesh,” Energies, vol. 15, no. 3, 2022, doi: 10.3390/en15031084. [9] H. Mohammad, “Achieving sustainable energy targets in Bangladesh,” UN Chron., vol. 52, no. 3, pp. 36–39, 2013. [10] W. Frost and C. Aspliden, “Characteristics of the wind. Wind Turbine Technology: Fundamental Concepts of Wind Turbine Engineering, DA Spera, Ed.” ASME Press, 1994. [11] P. Gipe, Wind energy basics: a guide to small and micro wind systems. Chelsea Green publishing company White River Junction, VT, 1999. 57 [12] P. K. Halder, N. Paul, M. U. H. Joardder, and M. Sarker, “Energy scarcity and potential of renewable energy in Bangladesh,” Renew. Sustain. Energy Rev., vol. 51, no. September 2017, pp. 1636–1649, 2015, doi: 10.1016/j.rser.2015.07.069. [13] A. Zervos, “Renewable Energy Policy Network for the 21st Century,” Renew. Energy Policy Netw. 21st Century, pp. 1–367, 2020, [Online]. Available: http://www.ren21.net/pdf/RE2007_Global_Status_Report.pdf. [14] M. R. Islam, M. R. Islam, and M. R. A. Beg, “Renewable energy resources and technologies practice in Bangladesh,” Renew. Sustain. Energy Rev., vol. 12, no. 2, pp. 299–343, 2008. [15] M. S. Kaiser, M. A. Rahman, M. M. Rahman, and S. A. Sharna, “Wind energy assessment for the coastal part of Bangladesh,” J. Eng. Appl. Sci., vol. 1, no. 2, pp. 87–92, 2006. [16] R. Vijay, “Pitch Control of Horizontal Axis Wind Turbine Pitch,” p. 42, 2011. [17] J. Liu, H. Lin, and J. Zhang, “Review on the technical perspectives and commercial viability of vertical axis wind turbines,” Ocean Eng., vol. 182, no. October 2018, pp. 608–626, 2019, doi: 10.1016/j.oceaneng.2019.04.086. [18] D. MacPhee and A. Beyene, “Recent advances in rotor design of vertical axis wind turbines,” Wind Eng., vol. 36, no. 6, pp. 647–666, 2012, doi: 10.1260/0309-524X.36.6.647. [19] M. Ghasemian, Z. N. Ashrafi, and A. Sedaghat, “A review on computational fluid dynamic simulation techniques for Darrieus vertical axis wind turbines,” Energy Convers. Manag., vol. 149, pp. 87–100, 2017, doi: 10.1016/j.enconman.2017.07.016. [20] G. Bedon, E. G. A. Antonini, S. De Betta, M. Raciti Castelli, and E. Benini, “Evaluation of the different aerodynamic databases for vertical axis wind turbine simulations,” Renew. Sustain. Energy Rev., vol. 40, pp. 386–399, 2014, doi: 10.1016/j.rser.2014.07.126. [21] A. A. Mohammed, H. M. Ouakad, A. Z. Sahin, and H. M. S. Bahaidarah, “Vertical axis wind turbine aerodynamics: Summary and review of momentum models,” J. Energy Resour. Technol. Trans. ASME, vol. 141, no. 5, pp. 1–10, 2019, doi: 10.1115/1.4042643. [22] L. Du, G. Ingram, and R. G. Dominy, “A review of H-Darrieus wind turbine aerodynamic research,” Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci., vol. 233, no. 23–24, pp. 7590– 7616, 2019, doi: 10.1177/0954406219885962. [23] M. M. Aslam Bhutta, N. Hayat, A. U. Farooq, Z. Ali, S. R. Jamil, and Z. Hussain, “Vertical axis wind turbine - A review of various configurations and design techniques,” Renew. Sustain. Energy Rev., vol. 16, no. 4, pp. 1926–1939, 2012, doi: 10.1016/j.rser.2011.12.004. 58 [24] R. J. Templin, “Aerodynamic performance theory for the NRC vertical-axis wind turbine,” National Aeronautical Establishment, Ottawa, Ontario (Canada), 1974. [25] M. Islam, D. S.-K. Ting, and A. Fartaj, “Aerodynamic models for Darrieus-type straightbladed vertical axis wind turbines,” Renew. Sustain. energy Rev., vol. 12, no. 4, pp. 1087– 1109, 2008. [26] R. E. Wilson and L. P.B.S., “MACHINES POWER WIND Of AERODYNAMICS,” Ntis Pb 238594, no. Oregon State University, 1974. [27] J. H. Strickland, “Darrieus turbine: a performance prediction model using multiple streamtubes,” Sandia Labs., Albuquerque, N. Mex.(USA), 1975. [28] R. J. Muraca, M. V Stephens, and J. R. Dagenhart, “Theoretical performance of cross-wind axis turbines with results for a catenary vertical axis configuration,” 1975. [29] D. J. Sharpe, A theoretical and experimental study of the Darrieus vertical axis wind turbine. Polytechnic School of Mechanical, Aeronautical and Production Engineering, 1977. [30] S. Read and D. J. Sharpe, “An extended multiple streamtube theory for vertical axis wind turbines,” in Wind Energy Workshop, 1980, pp. 65–72. [31] F.-Z. Tai, K.-W. Kang, M.-H. Jang, Y.-J. Woo, and J.-H. Lee, “Study on the analysis method for the vertical-axis wind turbines having Darrieus blades,” Renew. energy, vol. 54, pp. 26– 31, 2013. [32] S.-C. Roh and S.-H. Kang, “Effects of a blade profile, the Reynolds number, and the solidity on the performance of a straight bladed vertical axis wind turbine,” J. Mech. Sci. Technol., vol. 27, no. 11, pp. 3299–3307, 2013. [33] I. Paraschivoiu, “Double-Multiple Streamtube Model for Studying VAWT’s,” J. Propuls. Power, vol. 4, no. 4, pp. 370–378, 1988, [Online]. Available: http://ci.nii.ac.jp/naid/80004153847/en/. [34] H. Beri and Y. Yao, “Double multiple streamtube model and numerical analysis of vertical axis wind turbine,” Energy Power Eng., vol. 3, no. 03, p. 262, 2011. [35] I. Paraschivoiu, F. Saeed, and V. Desobry, “Prediction capabilities in vertical-axis wind turbine aerodynamics,” World Wind Energy Conf. Exhib., no. October, pp. 3–6, 2002. [36] J. H. Strickland, B. T. Webster, and T. Nguyen, “A vortex model of the darrieus turbine: An analytical and experimental study,” J. Fluids Eng. Trans. ASME, vol. 101, no. 4, pp. 500– 505, 1979, doi: 10.1115/1.3449018. 59 [37] L. B. Wang, L. Zhang, and N. D. Zeng, “A potential flow 2-D vortex panel model: Applications to vertical axis straight blade tidal turbine,” Energy Convers. Manag., vol. 48, no. 2, pp. 454–461, 2007, doi: 10.1016/j.enconman.2006.06.017. [38] I. H. Hirsch and A. C. Mandal, “A cascade theory for the aerodynamic performance of Darrieus wind turbines,” Wind Eng., pp. 164–175, 1987. [39] B. Hand and A. Cashman, “Aerodynamic modeling methods for a large-scale vertical axis wind turbine: A comparative study,” Renew. Energy, vol. 129, pp. 12–31, 2018. [40] B. Hand, A. Cashman, and G. Kelly, “A low-order model for offshore floating vertical axis wind turbine aerodynamics,” IEEE Trans. Ind. Appl., vol. 53, no. 1, pp. 512–520, 2016. [41] A. Rezaeiha, H. Montazeri, and B. Blocken, “On the accuracy of turbulence models for CFD simulations of vertical axis wind turbines,” Energy, vol. 180, pp. 838–857, 2019, doi: 10.1016/j.energy.2019.05.053. [42] L. Daróczy, G. Janiga, K. Petrasch, M. Webner, and D. Thévenin, “Comparative analysis of turbulence models for the aerodynamic simulation of H-Darrieus rotors,” Energy, vol. 90, pp. 680–690, 2015. [43] R. Howell, N. Qin, J. Edwards, and N. Durrani, “Wind tunnel and numerical study of a small vertical axis wind turbine,” Renew. energy, vol. 35, no. 2, pp. 412–422, 2010. [44] A. Untaroiu, H. G. Wood, P. E. Allaire, and R. J. Ribando, “Investigation of self-starting capability of vertical axis wind turbines using a computational fluid dynamics approach,” J. Sol. Energy Eng., vol. 133, no. 4, 2011. [45] J. McNaughton, F. Billard, and A. Revell, “Turbulence modelling of low Reynolds number flow effects around a vertical axis turbine at a range of tip-speed ratios,” J. Fluids Struct., vol. 47, pp. 124–138, 2014. [46] J. M. Edwards, L. Angelo Danao, and R. J. Howell, “Novel experimental power curve determination and computational methods for the performance analysis of vertical axis wind turbines,” J. Sol. Energy Eng., vol. 134, no. 3, 2012. [47] K. M. Almohammadi, D. B. Ingham, L. Ma, and M. Pourkashanian, “Modeling dynamic stall of a straight blade vertical axis wind turbine,” J. Fluids Struct., vol. 57, pp. 144–158, 2015. [48] A. Arab, M. Javadi, M. Anbarsooz, and M. Moghiman, “A numerical study on the aerodynamic performance and the self-starting characteristics of a Darrieus wind turbine considering its moment of inertia,” Renew. Energy, vol. 107, pp. 298–311, 2017. 60 [49] F. Balduzzi, J. Drofelnik, A. Bianchini, G. Ferrara, L. Ferrari, and M. S. Campobasso, “Darrieus wind turbine blade unsteady aerodynamics: a three-dimensional Navier-Stokes CFD assessment,” Energy, vol. 128, pp. 550–563, 2017. [50] H. F. Lam and H. Y. Peng, “Study of wake characteristics of a vertical axis wind turbine by two-and three-dimensional computational fluid dynamics simulations,” Renew. Energy, vol. 90, pp. 386–398, 2016. [51] M. Raciti Castelli, A. Englaro, and E. Benini, “The Darrieus wind turbine: Proposal for a new performance prediction model based on CFD,” Energy, vol. 36, no. 8, pp. 4919–4934, 2011, doi: 10.1016/j.energy.2011.05.036. [52] A. M. Biadgo, A. Simonović, D. Komarov, and S. Stupar, “Numerical and analytical investigation of vertical axis wind turbine,” FME Trans., vol. 41, no. 1, pp. 49–58, 2013. [53] P. Sabaeifard, H. Razzaghi, and A. Forouzandeh, “Determination of Vertical Axis Wind Turbines Optimal Configuration through CFD Simulations,” 2012 Int. Conf. Futur. Environ. Energy, vol. 28, pp. 109–113, 2012. [54] R. Gupta and A. Biswas, “Computational fluid dynamics analysis of a twisted three-bladed H-Darrieus rotor,” J. Renew. Sustain. Energy, vol. 2, no. 4, 2010, doi: 10.1063/1.3483487. [55] C. J. Simão Ferreira, H. Bijl, G. Van Bussel, and G. Van Kuik, “Simulating Dynamic Stall in a 2D VAWT: Modeling strategy, verification and validation with Particle Image Velocimetry data,” J. Phys. Conf. Ser., vol. 75, no. 1, 2007, doi: 10.1088/1742-6596/75/1/012023. [56] I. B. Fridleifsson and D. H. Freeston, “Geothermal energy research and development,” Geothermics, vol. 23, no. 2, pp. 175–214, 1994, doi: 10.1016/0375-6505(94)90037-X. [57] “Solution Methods Applied Computational Fluid Dynamics. Lecture 5 - online presentation.” https://en.ppt-online.org/648148 (accessed Apr. 30, 2022). [58] B. Hanso, 済無No Title No Title No Title, vol. 4. 2016. [59] S. W. Levy, Use of Madribon in Dermatological Conditions, With Special Reference To Acne, vol. 82, no. 1. 1959. [60] A. Ismail-Zadeh and P. Tackley, Computational methods for geodynamics. Cambridge University Press, 2010. [61] H. Beri and Y. Yao, “Effect of camber airfoil on self starting of Vertical Axis Wind Turbine.,” J. Environ. Sci. Technol., vol. 4, no. 3, pp. 302–312, 2011. [62] I. Gökalp and E. Lebas, “Alternative fuels for industrial gas turbines (AFTUR),” Appl. 61 Therm. Eng., vol. 24, no. 11–12, pp. 1655–1663, 2004, doi: 10.1016/j.applthermaleng.2003.10.035. [63] “The Cp-lamda curve.” http://mstudioblackboard.tudelft.nl/duwind/Wind energy online reader/Static_pages/Cp_lamda_curve.htm (accessed May 21, 2022). [64] “Wind energy technology.” https://www.slideshare.net/taralsoliya/wind-energy-technology70224162 (accessed May 26, 2022). [65] C. A. Bustamante, W. F. Florez, H. Power, and A. F. Hill, “Hydrokinetic turbine location analysis by a local collocation method with Radial Basis Functions for two-dimensional Shallow Water equations,” WIT Trans. Ecol. Environ., vol. 195, pp. 3–13, 2015, doi: 10.2495/ESUS150011. [66] H.-J. Bungartz and M. Schäfer, Fluid-structure interaction: modelling, simulation, optimisation, vol. 53. Springer Science & Business Media, 2006. [67] Y. Bazilevs, K. Takizawa, and T. E. Tezduyar, Computational fluid-structure interaction: methods and applications. John Wiley & Sons, 2013. [68] “Introduction — UW Libraries.” https://www.lib.washington.edu/specialcollections/collections/exhibits/tnb (accessed Apr. 17, 2022). [69] G. Hou, J. Wang, and A. Layton, “Numerical methods for fluid-structure interaction - A review,” Commun. Comput. Phys., vol. 12, no. 2, pp. 337–377, 2012, doi: 10.4208/cicp.291210.290411s. [70] T. S. K. Goud, A. S. Kumar, and S. S. Prasad, “Analysis of fluid-structure interaction on an aircraft wing.” Analysis, 2014. [71] M. Rashed, S. Camporeale, M. Torresi, R. Bravo, S. Tullis, and S. Ziada, “Performance Testing of a Small Vertical-Axis Wind Turbine.pdf Related papers Experiment al result s of a vert ical axis wind t urbine Performance Testing of a Small Vertical-Axis Wind Turbine.” [72] J. H. Ferziger, M. Peric, and A. Leonard, “Computational Methods for Fluid Dynamics Table of Contents,” Phys. Today, vol. 50, no. 3, p. 80, 1997, [Online]. Available: http://scitation.aip.org/content/aip/magazine/physicstoday/article/50/3/10.1063/1.881751. [73] J. Blazek, Computational fluid dynamics: principles and applications. ButterworthHeinemann, 2015. [74] “NACA 0015 (naca0015-il).” http://airfoiltools.com/airfoil/details?airfoil=naca0015-il 62 (accessed Apr. 17, 2022). [75] “NACA airfoil - Wikipedia.” https://en.wikipedia.org/wiki/NACA_airfoil#Equation_for_a_symmetrical_4- digit_NACA_airfoil (accessed Apr. 17, 2022). [76] M. R. Castelli, S. De Betta, and E. Benini, “Effect of blade number on a straight-bladed vertical-axis Darreius wind turbine,” World Acad. Sci. Eng. Technol., vol. 61, pp. 305–3011, 2012. [77] R. Langtry, J. Gola, and F. Menter, “Predicting 2D airfoil and 3D wind turbine rotor performance using a transition model for general CFD codes,” in 44th AIAA aerospace sciences meeting and exhibit, 2006, p. 395. [78] F. R. Menter, M. Kuntz, and R. Langtry, “Ten years of industrial experience with the SST turbulence model,” Turbul. heat mass Transf., vol. 4, no. 1, pp. 625–632, 2003. [79] S. Meshes, “g Reference Introduction to,” no. December, pp. 1–35, 2010. [80] A. Fluent and A. F.- Ent, “Chapter 11 . Modeling Flows Using Sliding and Deforming Meshes.” [81] Inc. ANSYS, “L t 4 Lecture 4 Cell Zones and Boundary Conditions,” no. December, pp. 1– 22, 2010, [Online]. Available: http://imechanica.org/files/fluent_13.0_lecture04-boundaryconditions.pdf. [82] “ANSYS FLUENT 12.0 User’s Guide - 11.2.3 Solution Strategies for Sliding Meshes.” https://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node392.htm (accessed Apr. 17, 2022). [83] J. D. Anderson, Introduction to Flight: 8th Edition. 2016. [84] S. Lain and C. Osorio, “Simulation and evaluation of a straight-bladed darrieus-type cross flow marine turbine,” J. Sci. Ind. Res. (India)., vol. 69, no. 12, pp. 906–912, 2010. [85] E. Vaishnav, “An Investigation on the Aerodynamic Performance of a Vertical Axis Wind Turbine,” Eng. Geol., vol. 104, pp. 144–155, 2010. [86] ANSYS Fluent Tutorial Guide 18, “ANSYS Fluent Tutorial Guide 18,” ANSYS Fluent Tutor. Guid. 18, vol. 15317, no. April, pp. 724–746, 2018. [87] S. Islam and M. Z. R. Khan, “A Review of Energy Sector of Bangladesh,” Energy Procedia, vol. 110, no. December 2016, pp. 611–618, 2017, doi: 10.1016/j.egypro.2017.03.193. [88] A. Namiranian, “3D Simulation of a 5MW Wind Turbine,” Bth.Se, p. 72, 2011, [Online]. 63 Available: http://www.bth.se/fou/cuppsats.nsf/all/b44c88bc0b99a4d7c1257940005d65db/$file/BTH201 2.Namiranian.pdf. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1804
dc.description Supervised by Dr. Md. Rezwanul Karim, Associate Professor, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical and Production Engineering, 2022. en_US
dc.description.abstract With the progress of time, as fossil fuel is being exhausted, renewable energy resources are getting more attention for their promising impact on the environment and its capability to replenish and sustainability. Wind energy is one of the most important renewable energy sources. A study shows that installed wind capacity increases by more than 30% every year. Design improvement of wind turbines has many parameters to consider for optimization. Experimental analysis is complex and not always feasible. But numerical simulation has the ability to analyze different parameters with less complexity. In this thesis, a 2D CFD simulation of an H-Darrieus vertical axis wind turbine is done. Prior to the simulation, mesh independent and time independent study was done not only to validate the result but also to reduce the computational effort. Sliding Mesh model approach was used for simulation which takes into account the vortices generated by the blades passing upwind on the blades downstream unlike over-simplified Moving Reference Frame (MRF) model. The transition SST model was used as the turbulence model which utilizes the advantages of both k-ε and k-ω models, providing better simulation results. From the simulation results, a Power co-efficient (Cp) vs Tip speed ratio λ curve was obtained and was validated against existing experimental data available in the literature. The knowledge obtained from this thesis can lead to the development of improved 2D simulations and ultimately 3D simulations in the future. This can also be used for design optimization and performance study of wind turbines. en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT) en_US
dc.subject KEYWORDS: H- Darrieus, Vertical Axis Wind Turbine, CFD Modelling, Sliding Mesh Model, Transition SST model, Simulation, ANSYS, Fluent en_US
dc.title CFD Modelling of H-Darrieus Vertical Axis Wind Turbine en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics