dc.identifier.citation |
[1] U. Kushwaha, Black Rice Research, History and Development. 2016. [2] USDA, “World agricultural supply and demand estimates (WASDE),” 2009, [Online]. Available: http://www.usda.gov/oce/commodity/wasde/. [3] S. H. Chang, “Rice Husk and Its Pretreatments for Bio-oil Production via Fast Pyrolysis: a Review,” Bioenergy Res., vol. 13, no. 1, pp. 23–42, 2020, doi: 10.1007/s12155-019-10059- w. [4] J. S. Lim, Z. Abdul Manan, S. R. Wan Alwi, and H. Hashim, “A review on utilisation of biomass from rice industry as a source of renewable energy,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3084–3094, 2012, doi: https://doi.org/10.1016/j.rser.2012.02.051. [5] N. Kar, R. K. Jain, and P. P. Srivastav, “Parboiling of dehusked rice,” Journal of Food Engineering, vol. 39, no. 1. pp. 17–22, 1999, doi: 10.1016/S0260-8774(98)00138-1. [6] F. Duan, C. Chyang, Y. Chin, and J. Tso, “Pollutant emission characteristics of rice husk combustion in a vortexing fluidized bed incinerator,” J. Environ. Sci., vol. 25, no. 2, pp. 335–339, 2013, doi: https://doi.org/10.1016/S1001-0742(12)60054-0. [7] J. Vadiveloo, B. Nurfariza, and J. G. Fadel, “Nutritional improvement of rice husks,” Anim. Feed Sci. Technol., vol. 151, no. 3, pp. 299–305, 2009, doi: https://doi.org/10.1016/j.anifeedsci.2009.03.002. [8] S. L. Lim, T. Y. Wu, E. Y. S. Sim, P. N. Lim, and C. Clarke, “Biotransformation of rice husk into organic fertilizer through vermicomposting,” Ecol. Eng., vol. 41, pp. 60–64, 2012, doi: https://doi.org/10.1016/j.ecoleng.2012.01.011. [9] J. Prasara-A and S. H. Gheewala, “Sustainable utilization of rice husk ash from power plants: A review,” J. Clean. Prod., vol. 167, pp. 1020–1028, 2017, doi: https://doi.org/10.1016/j.jclepro.2016.11.042. [10] S. C. Bhattacharyya, “Viability of off-grid electricity supply using rice husk: A case study from South Asia,” Biomass and Bioenergy, vol. 68, pp. 44–54, 2014, doi: https://doi.org/10.1016/j.biombioe.2014.06.002. [11] E. Menya, P. W. Olupot, H. Storz, M. Lubwama, and Y. Kiros, “Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review,” Chem. Eng. Res. Des., vol. 129, pp. 271–296, Jan. 2018, doi: 10.1016/J.CHERD.2017.11.008. [12] W. Roschat, T. Siritanon, B. Yoosuk, and V. Promarak, “Rice husk-derived sodium silicate as a highly efficient and low-cost basic heterogeneous catalyst for biodiesel production,” Energy Convers. Manag., vol. 119, pp. 453–462, Jul. 2016, doi: 32 10.1016/J.ENCONMAN.2016.04.071. [13] K. Kaur, J. Singh, and M. Kaur, “Compressive strength of rice husk ash based geopolymer: The effect of alkaline activator,” Constr. Build. Mater., vol. 169, pp. 188–192, Apr. 2018, doi: 10.1016/J.CONBUILDMAT.2018.02.200. [14] M. Ebrahimi, A. R. Caparanga, E. E. Ordono, O. B. Villaflores, and M. Pouriman, “Effect of ammonium carbonate pretreatment on the enzymatic digestibility, structural characteristics of rice husk and bioethanol production via simultaneous saccharification and fermentation process with Saccharomyces cerevisiae Hansen 2055,” Ind. Crops Prod., vol. 101, pp. 84–91, Jul. 2017, doi: 10.1016/J.INDCROP.2017.03.006. [15] M. Azadeh, C. Zamani, A. Ataie, and J. R. Morante, “Three-dimensional rice huskoriginated mesoporous silicon and its electrical properties,” Mater. Today Commun., vol. 14, pp. 141–150, Mar. 2018, doi: https://doi.org/10.1016/j.mtcomm.2018.01.003. [16] L. Dunnigan, P. J. Ashman, X. Zhang, and C. W. Kwong, “Production of biochar from rice husk: Particulate emissions from the combustion of raw pyrolysis volatiles,” J. Clean. Prod., vol. 172, pp. 1639–1645, Jan. 2018, doi: https://doi.org/10.1016/j.jclepro.2016.11.107. [17] O. C. Okeh, C. O. Onwosi, and F. J. C. Odibo, “Biogas production from rice husks generated from various rice mills in Ebonyi State, Nigeria,” Renew. Energy, vol. 62, pp. 204–208, Feb. 2014, doi: https://doi.org/10.1016/j.renene.2013.07.006. [18] M. Lubwama and V. A. Yiga, “Characteristics of briquettes developed from rice and coffee husks for domestic cooking applications in Uganda,” Renew. Energy, vol. 118, pp. 43–55, Apr. 2018, doi: https://doi.org/10.1016/j.renene.2017.11.003. [19] M. Banta and R. de Leon, “Parametric study of rice husk torrefaction for the development of sustainable solid fuel,” Int. J. Smart Grid Clean Energy, vol. 7, pp. 207–217, Jul. 2018, doi: 10.12720/sgce.7.3.207-217. [20] P. Ninduangdee and V. Kuprianov, “Fluidized bed co-combustion of rice husk pellets and moisturized rice husk: The effects of co-combustion methods on gaseous emissions,” Biomass and Bioenergy, vol. 112, pp. 73–84, May 2018, doi: 10.1016/j.biombioe.2018.02.016. [21] M. N. Islam and F. N. Ani, “Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel,” Bioresour. Technol., vol. 73, no. 1, pp. 67–75, 2000, doi: 10.1016/S0960-8524(99)00085-1. [22] L. Yang, H. Wang, J. Zhu, W. Sun, Y. Xu, and S. Wu, “Co-combustion and ash characteristics of Zhundong coal with rice husk hydrochar prepared by the hydrothermal carbonization technology for co-combustion,” IET Renew. Power Gener., no. September 2021, pp. 329–338, 2021, doi: 10.1049/rpg2.12324. [23] A. S. N. Huda, S. Mekhilef, and A. Ahsan, “Biomass energy in Bangladesh: Current status 33 and prospects,” Renew. Sustain. Energy Rev., vol. 30, pp. 504–517, 2014, doi: 10.1016/j.rser.2013.10.028. [24] H. N. Nguyen, L. Van De Steene, T. T. H. Le, D. D. Le, and M. Ha-Duong, “Rice Husk Gasification: From Industry to Laboratory,” IOP Conf. Ser. Earth Environ. Sci., vol. 159, no. 1, 2018, doi: 10.1088/1755-1315/159/1/012033. [25] “(Pdf) Rice Husk: a Potential Energy Resource,” p. 2018, 2018, [Online]. Available: https://www.researchgate.net/publication/335272922_RICE_HUSK_A_POTENTIAL_EN ERGY_RESOURCE. [26] Q. Zhang, K. Yang, H. Cai, K. Lingshuai, J. Liu, and X. Jiang, “Comparison of properties between rice husk/high density polyethylene and rice husk biochar/high density polyethylene composites,” Fuhe Cailiao Xuebao/Acta Mater. Compos. Sin., vol. 35, pp. 3044–3050, Nov. 2018, doi: 10.13801/j.cnki.fhclxb.20180227.002. [27] B. Rohith, N. P. P.V, K. Kamble, L. Rajmohan, and S. Suranani, “Hydrothermal Carbonization for Valorization of Rice Husk,” 2019, pp. 104–121. [28] O. F. The, A. Of, O. F. The, and R. Of, “Obtaining biochar from rice husk and straw,” vol. 1491, no. February 2021. [29] J. Bahru, “Electrical Energy Potential of Rice Husk As Fuel,” no. October, pp. 9–11, 2015. [30] D. Chen, J. Zhou, Q. Zhang, X. Zhu, and Q. Lu, “Upgrading of rice husk by torrefaction and its influence on the fuel properties,” BioResources, vol. 9, no. 4, pp. 5893–5905, 2014, doi: 10.15376/biores.9.4.5893-5905. [31] V. M. Duong, F. Benedikt, and J. Schmid, “Product gas measurement in fluidized bed steam gasification of rice husks,” Paliva, vol. 11, no. 1, pp. 7–13, 2019, doi: 10.35933/paliva.2019.01.02. [32] M. Chakraborty, S. Baniya, M. Sattler, and I, “Beneficial Reuse of Rice Husk : Solving a Large-Scale Waste Challenge in Asia Agricultural rice production leads to large volumes of rice husk as a waste,” Mag. Environ. Manag., no. January, 2020. [33] F. Pinto et al., “Effect of Rice Husk Torrefaction on Syngas Production and Quality,” Energy and Fuels, vol. 31, no. 5, pp. 5183–5192, 2017, doi: 10.1021/acs.energyfuels.7b00259. [34] N. Meng et al., “Structural improvement and thermodynamic optimization of a novel supercritical CO2 cycle driven by hot dry rock for power generation,” Energy Convers. Manag., vol. 235, no. January, p. 114014, 2021, doi: 10.1016/j.enconman.2021.114014. [35] J. Sarkar and S. Bhattacharyya, “Optimization of recompression S-CO2 power cycle with reheating,” Energy Convers. Manag., vol. 50, no. 8, pp. 1939–1945, 2009, doi: 10.1016/j.enconman.2009.04.015. [36] L. Meriño Stand, G. Valencia Ochoa, and J. Duarte Forero, “Energy and exergy assessment 34 of a combined supercritical Brayton cycle-orc hybrid system using solar radiation and coconut shell biomass as energy source,” Renew. Energy, vol. 175, pp. 119–142, 2021, doi: 10.1016/j.renene.2021.04.118. [37] M. E. Hoque, F. Rashid, and M. Aziz, “Gasification and power generation characteristics of rice husk, sawdust, and coconut shell using a fixed-bed downdraft gasifier,” Sustain., vol. 13, no. 4, pp. 1–19, 2021, doi: 10.3390/su13042027. [38] M. S. Islam, M. S. Jamal, S. M. A. Sujan, M. Ismail, M. Y. Miah, and M. Saha, “Bio-oil from pyrolysis of rice husk,” J. Biofuels, vol. 2, no. 1, p. 1, 2011, doi: 10.5958/j.0976- 3015.2.1.008. [39] B. Rajasekhar Reddy and R. Vinu, “Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: Product characterization and evidence of interactions,” Fuel Process. Technol., vol. 178, pp. 41–52, 2018, doi: https://doi.org/10.1016/j.fuproc.2018.04.018. [40] P. C. Murugan and S. Joseph Sekhar, “Species – Transport CFD model for the gasification of rice husk (Oryza Sativa) using downdraft gasifier,” Comput. Electron. Agric., vol. 139, pp. 33–40, 2017, doi: https://doi.org/10.1016/j.compag.2017.05.004. [41] M. Bharath, V. Raghavan, B. V. S. S. S. Prasad, and S. R. Chakravarthy, “Co-gasification of Indian rice husk and Indian coal with high-ash in bubbling fluidized bed gasification reactor,” Appl. Therm. Eng., vol. 137, pp. 608–615, 2018, doi: https://doi.org/10.1016/j.applthermaleng.2018.04.035. [42] R. Khandanlou, G. C. Ngoh, and W. T. Chong, “Feasibility study and structural analysis of cellulose isolated from rice husk: Microwave irradiation, optimization, and treatment process scheme,” BioResources, vol. 11, no. 3, pp. 5751–5766, 2016, doi: 10.15376/biores.11.3.5751-5766. [43] V. Balasundram et al., “Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil,” J. Clean. Prod., vol. 167, pp. 218–228, 2017, doi: https://doi.org/10.1016/j.jclepro.2017.08.173. [44] A. C. M. Loy et al., “The effect of industrial waste coal bottom ash as catalyst in catalytic pyrolysis of rice husk for syngas production,” Energy Convers. Manag., vol. 165, pp. 541– 554, 2018, doi: https://doi.org/10.1016/j.enconman.2018.03.063. [45] S. Zhang, S. Zhu, H. Zhang, T. Chen, and Y. Xiong, “Catalytic fast pyrolysis of rice husk: Effect of coupling leaching with torrefaction pretreatment,” J. Anal. Appl. Pyrolysis, vol. 133, pp. 91–96, 2018, doi: https://doi.org/10.1016/j.jaap.2018.04.016. [46] S. Zhang, Y. Su, D. Xu, S. Zhu, H. Zhang, and X. Liu, “Effects of torrefaction and organicacid leaching pretreatment on the pyrolysis behavior of rice husk,” Energy, vol. 149, pp. 804–813, 2018, doi: https://doi.org/10.1016/j.energy.2018.02.110. [47] D. Feng, Y. Zhang, Y. Zhao, and S. Sun, “Catalytic effects of ion-exchangeable K+ and Ca2+ on rice husk pyrolysis behavior and its gas–liquid–solid product properties,” Energy, 35 vol. 152, pp. 166–177, 2018, doi: https://doi.org/10.1016/j.energy.2018.03.119. [48] T. Madhiyanon, P. Sathitruangsak, and S. Soponronnarit, “Co-combustion of rice husk with coal in a cyclonic fluidized-bed combustor (ψ-FBC),” Fuel, vol. 88, no. 1, pp. 132–138, 2009, doi: https://doi.org/10.1016/j.fuel.2008.08.008. [49] A. Pattiya and S. Suttibak, “Influence of a glass wool hot vapour filter on yields and properties of bio-oil derived from rapid pyrolysis of paddy residues,” Bioresour. Technol., vol. 116, pp. 107–113, 2012, doi: https://doi.org/10.1016/j.biortech.2012.03.116. [50] Y. G. Pan, X. Roca, E. Velo, and L. Puigjaner, “Removal of tar by secondary air in fluidised bed gasification of residual biomass and coal,” Fuel, vol. 78, no. 14, pp. 1703–1709, 1999, doi: 10.1016/S0016-2361(99)00118-0. [51] P. McKendry, “Energy production from biomass (part 2): conversion technologies,” Bioresour. Technol., vol. 83, no. 1, pp. 47–54, May 2002, doi: 10.1016/S0960- 8524(01)00119-5. [52] D. Brown, M. Gassner, T. Fuchino, and F. Maréchal, “Thermo-economic analysis for the optimal conceptual design of biomass gasification energy conversion systems,” Appl. Therm. Eng., vol. 29, no. 11–12, pp. 2137–2152, Aug. 2009, doi: 10.1016/J.APPLTHERMALENG.2007.06.021. [53] A. Franco and N. Giannini, “Perspectives for the use of biomass as fuel in combined cycle power plants,” Int. J. Therm. Sci., vol. 44, no. 2, pp. 163–177, 2005, doi: 10.1016/j.ijthermalsci.2004.07.005. [54] P. Klimantos, N. Koukouzas, A. Katsiadakis, and E. Kakaras, “Air-blown biomass gasification combined cycles (BGCC): System analysis and economic assessment,” Energy, vol. 34, no. 5, pp. 708–714, 2009, doi: 10.1016/j.energy.2008.04.009. [55] E. Natarajan, A. Nordin, and A. N. Rao, “Overview of combustion and gasification of rice husk in fluidized bed reactors,” Biomass and Bioenergy, vol. 14, no. 5–6, pp. 533–546, 1998, doi: 10.1016/S0961-9534(97)10060-5. [56] S. C. Bhattacharya, N. Shah, and Z. Alikhani, “Some aspects of fluidized bed combustion of paddy husk,” Appl. Energy, vol. 16, no. 4, pp. 307–316, 1984, doi: 10.1016/0306- 2619(84)90005-9. [57] P. García-Bacaicoa, J. F. Mastral, J. Ceamanos, C. Berrueco, and S. Serrano, “Gasification of biomass/high density polyethylene mixtures in a downdraft gasifier,” Bioresour. Technol., vol. 99, no. 13, pp. 5485–5491, 2008, doi: 10.1016/j.biortech.2007.11.003. [58] T. Phuphuakrat, N. Nipattummakul, T. Namioka, S. Kerdsuwan, and K. Yoshikawa, “Characterization of tar content in the syngas produced in a downdraft type fixed bed gasification system from dried sewage sludge,” Fuel, vol. 89, no. 9, pp. 2278–2284, 2010, doi: 10.1016/j.fuel.2010.01.015. [59] A. A. C. M. Beenackers, “Biomass gasification in moving beds, a review of European 36 technologies,” Renew. Energy, vol. 16, no. 1–4, pp. 1180–1186, 1999, doi: 10.1016/s0960- 1481(98)00469-8. [60] S. J. Yoon, Y. Il Son, Y. K. Kim, and J. G. Lee, “Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier,” Renew. Energy, vol. 42, pp. 163–167, 2012, doi: 10.1016/j.renene.2011.08.028. [61] M. Ahiduzzaman and A. K. M. Sadrul Islam, “Energy yield of torrefied rice husk at atmospheric condition,” Procedia Eng., vol. 105, no. Icte 2014, pp. 719–724, 2015, doi: 10.1016/j.proeng.2015.05.062. [62] S. Gent, M. Twedt, C. Gerometta, and E. Almberg, Fundamental Theories of Torrefaction by Thermochemical Conversion. 2017. [63] G. Almeida, J. Brito, and P. Perre, “Alterations in Energy Properties of Eucalyptus Wood and Bark Subjected to Torrefaction: The Potential of Mass Loss as a Synthetic Indicator,” Bioresour. Technol., vol. 101, pp. 9778–9784, Dec. 2010, doi: 10.1016/j.biortech.2010.07.026. [64] F. F. Felfli, C. A. Luengo, J. A. Suárez, and P. A. Beatón, “Wood briquette torrefaction,” Energy Sustain. Dev., vol. 9, no. 3, pp. 19–22, 2005, doi: https://doi.org/10.1016/S0973- 0826(08)60519-0. [65] M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Torrefaction of wood: Part 1. Weight loss kinetics,” J. Anal. Appl. Pyrolysis, vol. 77, no. 1, pp. 28–34, 2006, doi: https://doi.org/10.1016/j.jaap.2006.01.002. [66] M. J. Prins, K. J. Ptasinski, and F. J. J. G. Janssen, “Torrefaction of wood: Part 2. Analysis of products,” J. Anal. Appl. Pyrolysis, vol. 77, no. 1, pp. 35–40, 2006, doi: https://doi.org/10.1016/j.jaap.2006.01.001. [67] P. Bergman and J. Kiel, “Torrefaction for biomass upgrading,” Proc. 14th Eur. Biomass Conf. Exhib., Jan. 2005. [68] T. Cheng, A. H. Pandyaswargo, and H. Onoda, “Comparison of torrefaction and hydrothermal treatment as pretreatment technologies for rice husks,” Energies, vol. 13, no. 19, 2020, doi: 10.3390/en13195158. [69] Q.-V. Bach and Ø. Skreiberg, “Upgrading biomass fuels via wet torrefaction: A review and comparison with dry torrefaction,” Renew. Sustain. Energy Rev., vol. 54, pp. 665–677, 2016, doi: https://doi.org/10.1016/j.rser.2015.10.014. [70] W.-H. Chen, S.-C. Ye, and H.-K. Sheen, “Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating,” Bioresour. Technol., vol. 118, pp. 195–203, 2012, doi: https://doi.org/10.1016/j.biortech.2012.04.101. [71] Q. V. Bach, K. Q. Tran, R. A. Khalil, Ø. Skreiberg, and G. Seisenbaeva, “Comparative assessment of wet torrefaction,” Energy and Fuels, vol. 27, no. 11, pp. 6743–6753, 2013, doi: 10.1021/ef401295w. 37 [72] S. Chang et al., “Effect of hydrothermal pretreatment on properties of bio-oil produced from fast pyrolysis of eucalyptus wood in a fluidized bed reactor,” Bioresour. Technol., vol. 138, pp. 321–328, 2013, doi: https://doi.org/10.1016/j.biortech.2013.03.170. [73] É. Le Roux, M. Chaouch, P. N. Diouf, and T. Stevanovic, “Impact of a pressurized hot water treatment on the quality of bio-oil produced from aspen,” Biomass and Bioenergy, vol. 81, pp. 202–209, 2015, doi: https://doi.org/10.1016/j.biombioe.2015.07.005. [74] W. Yan, S. Islam, C. J. Coronella, and V. R. Vásquez, “Pyrolysis kinetics of raw/hydrothermally carbonized lignocellulosic biomass,” Environ. Prog. Sustain. Energy, vol. 31, no. 2, pp. 200–204, Jul. 2012, doi: https://doi.org/10.1002/ep.11601. [75] S. Zhang, T. Chen, Y. Xiong, and Q. Dong, “Effects of wet torrefaction on the physicochemical properties and pyrolysis product properties of rice husk,” Energy Convers. Manag., vol. 141, pp. 403–409, 2017, doi: 10.1016/j.enconman.2016.10.002. [76] S. K. Hoekman, A. Broch, C. Robbins, B. Zielinska, and L. Felix, “Hydrothermal carbonization (HTC) of selected woody and herbaceous biomass feedstocks,” Biomass Convers. Biorefinery, vol. 3, no. 2, pp. 113–126, 2013, doi: 10.1007/s13399-012-0066-y. [77] M. Mäkelä, A. Fullana, and K. Yoshikawa, “Ash behavior during hydrothermal treatment for solid fuel applications. Part 1: Overview of different feedstock,” Energy Convers. Manag., vol. 121, pp. 402–408, 2016, doi: https://doi.org/10.1016/j.enconman.2016.05.016. [78] M. Mäkelä and K. Yoshikawa, “Ash behavior during hydrothermal treatment for solid fuel applications. Part 2: Effects of treatment conditions on industrial waste biomass,” Energy Convers. Manag., vol. 121, pp. 409–414, 2016, doi: https://doi.org/10.1016/j.enconman.2016.05.015. [79] Y. Lee et al., “Comparison of biochar properties from biomass residues produced by slow pyrolysis at 500°C,” Bioresour. Technol., vol. 148, pp. 196–201, 2013, doi: https://doi.org/10.1016/j.biortech.2013.08.135. [80] S. H. Chang, “Bio-oil derived from palm empty fruit bunches: Fast pyrolysis, liquefaction and future prospects,” Biomass and Bioenergy, vol. 119, pp. 263–276, Dec. 2018, doi: 10.1016/J.BIOMBIOE.2018.09.033. [81] S. Meesuk, J.-P. Cao, K. Sato, Y. Ogawa, and T. Takarada, “Fast Pyrolysis of Rice Husk in a Fluidized Bed: Effects of the Gas Atmosphere and Catalyst on Bio-oil with a Relatively Low Content of Oxygen,” Energy & Fuels, vol. 25, no. 9, pp. 4113–4121, Sep. 2011, doi: 10.1021/ef200867q. [82] S. Zhang, J. Xu, Q. Cai, and Y. Cui, “Production of aromatic hydrocarbons by hydrogenation-cocracking of bio-oil and methanol,” Fuel Process. Technol., vol. 161, pp. 232–239, Jun. 2017, doi: 10.1016/J.FUPROC.2016.08.011. [83] F. Gong et al., “Selective conversion of bio-oil to light olefins: Controlling catalytic cracking for maximum olefins,” Bioresour. Technol., vol. 102, no. 19, pp. 9247–9254, Oct. 38 2011, doi: 10.1016/J.BIORTECH.2011.07.009. [84] R. O. Arazo, M. D. G. de Luna, and S. C. Capareda, “Assessing biodiesel production from sewage sludge-derived bio-oil,” Biocatal. Agric. Biotechnol., vol. 10, pp. 189–196, Apr. 2017, doi: 10.1016/J.BCAB.2017.03.011. [85] N. S. Shamsul, S. K. Kamarudin, and N. A. Rahman, “Conversion of bio-oil to bio gasoline via pyrolysis and hydrothermal: A review,” Renew. Sustain. Energy Rev., vol. 80, pp. 538– 549, Dec. 2017, doi: 10.1016/J.RSER.2017.05.245. [86] M. Saidi and A. Jahangiri, “Refinery approach of bio-oils derived from fast pyrolysis of lignin to jet fuel range hydrocarbons: Reaction network development for catalytic conversion of cyclohexanone,” Chem. Eng. Res. Des., vol. 121, pp. 393–406, May 2017, doi: 10.1016/J.CHERD.2017.03.029. [87] A. Demirbas and K. Dincer, “Sustainable Green Diesel: A Futuristic View,” Energy Sources, Part A Recover. Util. Environ. Eff., vol. 30, no. 13, pp. 1233–1241, May 2008, doi: 10.1080/15567030601082829. [88] G. Pourhashem, S. Spatari, A. A. Boateng, A. J. McAloon, and C. A. Mullen, “Life cycle environmental and economic tradeoffs of using fast pyrolysis products for power generation,” Energy and Fuels, vol. 27, no. 5. pp. 2578–2587, 2013, doi: 10.1021/ef3016206. [89] C. P. Hsu, A. N. Huang, and H. P. Kuo, “Analysis of the rice husk pyrolysis products from a fluidized bed reactor,” Procedia Eng., vol. 102, pp. 1183–1186, 2015, doi: 10.1016/j.proeng.2015.01.244. [90] P. Unrean, B. C. Lai Fui, E. Rianawati, and M. Acda, “Comparative techno-economic assessment and environmental impacts of rice husk-to-fuel conversion technologies,” Energy, vol. 151, pp. 581–593, 2018, doi: 10.1016/j.energy.2018.03.112. [91] A. V. Bridgwater, “Review of fast pyrolysis of biomass and product upgrading,” Biomass and Bioenergy, vol. 38, pp. 68–94, 2012, doi: 10.1016/j.biombioe.2011.01.048. [92] A. Aden et al., “Lignocellulosic Biomass to Ethanol Process Design and Economics Utilizing Co-Current Dilute Acid Prehydrolysis and Enzymatic Hydrolysis for Corn Stover,” United States, 2002. doi: 10.2172/15001119. [93] X. Shen, R. Kommalapati, and Z. Huque, “The Comparative Life Cycle Assessment of Power Generation from Lignocellulosic Biomass,” Sustainability, vol. 7, pp. 12974–12987, Sep. 2015, doi: 10.3390/su71012974. [94] T. Chungsangunsit, S. H. Gheewala, and S. Patumsawad, “Emission assessment of rice husk combustion for power production,” World Acad. Sci. Eng. Technol., vol. 53_ _, no. 5, pp. 1070–1075, 2009, [Online]. Available: c:/reference/Quema/2986.pdf. [95] J. Prasara-A and T. Grant, “Comparative life cycle assessment of uses of rice husk for energy purposes,” Int. J. Life Cycle Assess., vol. 16, pp. 493–502, Jul. 2011, doi: 39 10.1007/s11367-011-0293-7. [96] S. Caserini, S. Livio, M. Giugliano, M. Grosso, and L. Rigamonti, “LCA of domestic and centralized biomass combustion: The case of Lombardy (Italy),” Biomass and Bioenergy, vol. 34, no. 4, pp. 474–482, 2010, doi: https://doi.org/10.1016/j.biombioe.2009.12.011. [97] S. Lettens, B. Muys, R. Ceulemans, E. Moons, J. Garcia Quijano, and P. Coppin, “Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production,” Biomass and Bioenergy, vol. 24, pp. 179–197, Mar. 2003, doi: 10.1016/S0961- 9534(02)00104-6. [98] G. Myhre et al., “Anthropogenic and natural radiative forcing.” Cambridge University Press, Cambridge, UK, pp. 659–740, [Online]. Available: https://heronet.epa.gov/heronet/index.cfm/reference/download/reference_id/1797670. [99] S. Xiu and A. Shahbazi, “Bio-oil production and upgrading research: A review,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 4406–4414, 2012, doi: https://doi.org/10.1016/j.rser.2012.04.028. [100] F. Abnisa, W. M. A. Wan Daud, and J. N. Sahu, “Optimization and characterization studies on bio-oil production from palm shell by pyrolysis using response surface methodology,” Biomass and Bioenergy, vol. 35, no. 8, pp. 3604–3616, 2011, doi: https://doi.org/10.1016/j.biombioe.2011.05.011. [101] B. S. Thomas, “Green concrete partially comprised of rice husk ash as a supplementary cementitious material – A comprehensive review,” Renew. Sustain. Energy Rev., vol. 82, pp. 3913–3923, Feb. 2018, doi: 10.1016/J.RSER.2017.10.081. [102] I. Quispe, R. Navia, and R. Kahhat, “Energy potential from rice husk through direct combustion and fast pyrolysis: A review,” Waste Management, vol. 59. Pergamon, pp. 200– 210, Jan. 01, 2017, doi: 10.1016/j.wasman.2016.10.001. [103] T. P. T. Pham, R. Kaushik, G. K. Parshetti, R. Mahmood, and R. Balasubramanian, “Food waste-to-energy conversion technologies: Current status and future directions,” Waste Manag., vol. 38, pp. 399–408, 2015, doi: https://doi.org/10.1016/j.wasman.2014.12.004. [104] N. D. Berge, L. Li, J. R. V Flora, and K. S. Ro, “Assessing the environmental impact of energy production from hydrochar generated via hydrothermal carbonization of food wastes.,” Waste Manag., vol. 43, pp. 203–217, Sep. 2015, doi: 10.1016/j.wasman.2015.04.029. [105] Y. Gao et al., “Effect of residence time on chemical and structural properties of hydrochar obtained by hydrothermal carbonization of water hyacinth,” Energy, vol. 58, pp. 376–383, 2013, doi: https://doi.org/10.1016/j.energy.2013.06.023. [106] P. Gilbert, C. Ryu, V. Sharifi, and J. Swithenbank, “Effect of process parameters on pelletisation of herbaceous crops,” Fuel, vol. 88, no. 8, pp. 1491–1497, 2009, doi: https://doi.org/10.1016/j.fuel.2009.03.015. 40 [107] J. Wannapeera, X. Li, N. Worasuwannarak, R. Ashida, and K. Miura, “Production of HighGrade Carbonaceous Materials and Fuel Having Similar Chemical and Physical Properties from Various Types of Biomass by Degradative Solvent Extraction,” Energy & Fuels, vol. 26, pp. 4521–4531, Jul. 2012, doi: 10.1021/ef3003153. [108] J. Sarkar, “Second law analysis of supercritical CO2 recompression Brayton cycle,” Energy, vol. 34, no. 9, pp. 1172–1178, 2009, doi: 10.1016/j.energy.2009.04.030. [109] C. Wu, S. sen Wang, X. jia Feng, and J. Li, “Energy, exergy and exergoeconomic analyses of a combined supercritical CO2 recompression Brayton/absorption refrigeration cycle,” Energy Convers. Manag., vol. 148, pp. 360–377, 2017, doi: 10.1016/j.enconman.2017.05.042. |
en_US |