dc.identifier.citation |
[1] Schmidt, A.D., Clausen, J.H., Camtepe, A. and Albayrak, S., 2009, October. Detecting symbian os malware through static function call analysis. In 2009 4th International Conference on Malicious and Unwanted Software (MALWARE) (pp. 15-22). IEEE. [2] Upchurch, J. and Zhou, X., 2016, October. Malware provenance: code reuse detection in malicious software at scale. In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE) (pp. 1-9). IEEE. [3] Alashjaee, A.M. and Haney, M., 2021, January. Forensic Requirements Specification for Mobile Device Malware Forensic Models. In 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC) (pp. 0930-0935). IEEE. [4] Qiao, Y., Yun, X. and Zhang, Y., 2016, August. How to automatically identify the homology of different malware. In 2016 IEEE Trustcom/BigDataSE/ISPA (pp. 929-936). IEEE. [5] Barabosch, T. and Gerhards-Padilla, E., 2014, October. Host-based code injection attacks: A popular technique used by malware. In 2014 9th International Conference on Malicious and Unwanted Software: The Americas (MALWARE) (pp. 8-17). IEEE. [6] Zhao, B. and Lao, Y., 2018, October. Resilience of pruned neural network against poisoning attack. In 2018 13th International Conference on Malicious and Unwanted Software (MALWARE) (pp. 78-83). IEEE. [7] Ray, A. and Nath, A., 2016. Introduction to Malware and Malware Analysis: A brief overview. International Journal, 4(10). [8] Subrahmanian, V.S., Ovelg¨onne, M., Dumitras, T. and Prakash, B.A., 2015. Types of malware and malware distribution strategies. In The Global CyberVulnerability Report (pp. 33-46). Springer, Cham. 73 [9] Skoudis, E. and Zeltser, L., 2004. Malware: Fighting malicious code. Prentice Hall Professional. [10] Mishra, U., 2010. An introduction to computer viruses. Available at SSRN 1916631. [11] Apple, R. and Arch, C., 2007. Malicious Software-A Brief History. [12] Panko, R.R., 2003. Slammer: The first blitz worm. Communications of the Association for Information Systems, 11(1), p.12. [13] Rajesh, B., Reddy, Y.J. and Reddy, B.D.K., 2015. A survey paper on malicious computer worms. International Journal of Advanced Research in Computer Science and Technology, 3(2), pp.161-167. [14] Martin, J.C., Burge III, L.L., Gill, J.I., Washington, A.N. and Alfred, M., 2010. Modelling the spread of mobile malware. International Journal of Computer Aided Engineering and Technology, 2(1), pp.3-14. [15] J. Koret and E. Bachaalany, The antivirus hacker’s handbook. Indianapolis, IN: John Wiley Sons Inc, 2015. [16] Team, U.S.S., 2010. Zeus malfare: Threat banking industry. [17] J. Aycock, Spyware and Adware, vol. 50. Boston, MA: Springer US, 2011. [18] Landesman, Mary Landesman. “The First 25 Years Of Malware.” Lifewire. www.lifewire.com, March 9, 2021. https://www.lifewire.com/brief-history-ofmalware-153616. [19] Ali, A., 2017. Ransomware: A research and a personal case study of dealing with this nasty malware. Issues in Informing Science and Information Technology, 14, pp.87-99. [20] Chess, B. and McGraw, G., 2004. Static analysis for security. IEEE security privacy, 2(6), pp.76-79. 74 [21] Shijo, P.V. and Salim, A.J.P.C.S., 2015. Integrated static and dynamic analysis for malware detection. Procedia Computer Science, 46, pp.804-811. [22] C. H. Malin, E. Casey, and J. M. Aquilina, Malware Forensics: Investigating and Analyzing Malicious Code. Syngress, 2008. [23] Talukder, S., 2020. Tools and techniques for malware detection and analysis. arXiv preprint arXiv:2002.06819. [24] Landage, Jyoti, and M. P. Wankhade. ”Malware and malware detection techniques: A survey.” International Journal of Engineering Research and Technology (IJERT) 2.12 (2013): 2278-0181. [25] Robiah, Y., et al. ”A new generic taxonomy on hybrid malware detection technique.” arXiv preprint arXiv: 0909.4860 (2009). [26] Tahir, R., 2018. A study on malware and malware detection techniques. International Journal of Education and Management Engineering, 8(2), p.20. [27] Talal, M., Zaidan, A.A., Zaidan, B.B., Albahri, O.S., Alsalem, M.A., Albahri, A.S., Alamoodi, A.H., Kiah, M.L.M., Jumaah, F.M. and Alaa, M., 2019. Comprehensive review and analysis of anti-malware apps for smartphones. Telecommunication Systems, 72(2), pp.285-337. [28] Fazeen, M., Dantu, R. (2014). Another free app: Does it have the right intentions? In 2014 twelfth annual international conference on privacy, security and trust (PST) (pp. 282–289) [29] Yerima, S.Y., Sezer, S. and Muttik, I., 2015. High accuracy android malware detection using ensemble learning. IET Information Security, 9(6), pp.313-320. [30] M. Chandramohan and H. B. K. Tan, ”Detection of Mobile Malware in the Wild,” Computer, vol. 45, no. 9. pp. 65–71, 2012. [31] Mell, P., Kent, K. and Nusbaum, J., 2005. Guide to malware incident prevention and handling (pp. 800-83). Gaithersburg, Maryland: US Department of 75 Commerce, Technology Administration, National Institute of Standards and Technology. [32] Jyoti Landage, Prof. M. P. Wankhade, 2013, Malware and Malware Detection Techniques : A Survey, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH TECHNOLOGY (IJERT) Volume 02, Issue 12 (December 2013), [33] Fuchsberger, A., 2005. Intrusion detection systems and intrusion prevention systems. Information Security Technical Report, 10(3), pp.134-139. [34] Qiu, L., Varghese, G. and Suri, S., 2001, June. Fast firewall implementations for software-based and hardware-based routers. In Proceedings of the 2001 ACM SIGMETRICS international conference on Measurement and modeling of computer systems (pp. 344-345). [35] Schneider, F.B., 2003. Least privilege and more [computer security]. IEEE Security Privacy, 1(5), pp.55-59. [36] Cavusoglu, H., Cavusoglu, H. and Zhang, J., 2008. Security patch management: Share the burden or share the damage?. Management Science, 54(4), pp.657-670. [37] Termuxhackers-Id. (n.d.). Termuxhackers-ID/sara: SARA - simple Android ransomware attack. GitHub. Retrieved April 18, 2022, from https://github.com/termuxhackers-id/SARA [38] Laya Taheri, Andi Fitriah Abdulkadir, Arash Habibi Lashkari; Extensible Android Malware Detection and Family Classification Using Network-Flows and API-Calls, The IEEE (53rd) International Carnahan Conference on Security Technology, India, 2019 [39] Kiss, N., Lalande, J.F., Leslous, M., and Viet Triem Tong, V. 2016. Kharon dataset: Android malware under a microscope. In Learning from Authoritative Security Experiment Results. The USENIX Association. 76 [40] Malware Sample Exchange. MalwareBazaar. (n.d.). Retrieved April 23, 2022, from https://bazaar.abuse.ch/ [41] Quark-Engine. (n.d.). Quark-engine/quark-engine: Android malware (analysis: Scoring) system. GitHub. Retrieved April 18, 2022, from https://github.com/quark-engine/quark-engine [42] Li, Y., Yang, Z., Guo, Y., and Chen, X. 2017. DroidBot: A Lightweight UI-Guided Test Input Generator for Android. In Proceedings of the 39th International Conference on Software Engineering Companion (pp. 23–26). IEEE Press. [43] Honeynet. (n.d.). Honeynet/droidbot: A lightweight test input generator for Android. similar to monkey, but with more intelligence and cool features! GitHub. Retrieved April 18, 2022, from https://github.com/honeynet/droidbot [44] MLDroid. (n.d.). MLDroid/Androwarn: Yet another static code analyzer for malicious Android Applications. GitHub. Retrieved April 18, 2022, from https://github.com/MLDroid/androwarn [45] Hexabin. (n.d.). Hexabin/APKSTAT: Automated Information Retrieval from APKS for initial analysis. GitHub. Retrieved April 18, 2022, from https://github.com/hexabin/APKStat [46] Rednaga. (n.d.). Rednaga/apkid: Android Application Identifier for Packers, protectors, obfuscators and oddities - peid for Android. GitHub. Retrieved April 18, 2022, from https://github.com/rednaga/APKiD [47] Cryptax. (n.d.). Cryptax/droidlysis: Property extractor for Android apps. GitHub. Retrieved April 18, 2022, from https://github.com/cryptax/droidlysis [48] A. Kumar, V. Agarwal, S. K. Shandilya, A. Shalaginov, S. Upadhyay, B. Yadav (2019). PACE: Platform for Android Malware Classification and Performance Evaluation. In 2019 IEEE International Conference on Big Data (Big Data) (pp. 4280-4288). 77 [49] Ajit Kumar, K.S. Kuppusamy, G. Aghila (2018). FAMOUS: Forensic Analysis of MObile devices Using Scoring of application permissions. Future Generation Computer Systems, 83, 158-172. [50] Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K. and Siemens, C.E.R.T., 2014, February. Drebin: Effective and explainable detection of android malware in your pocket. In Ndss (Vol. 14, pp. 23-26). [51] MLDroid. (n.d.). MLDroid/Drebin: Drebin - NDSS 2014 re-implementation. GitHub. Retrieved April 18, 2022, from https://github.com/MLDroid/drebin [52] Allix, K., Bissyand´e, T.F., J´erome, Q., Klein, J. and Le Traon, Y., 2016. Empirical assessment of machine learning-based malware detectors for Android. Empirical Software Engineering, 21(1), pp.183-211. [53] MLDroid. (n.d.). MLDroid/csbd: The repository contains the python implementation of the android malware detection paper: ”empirical assessment of machine learning-based malware detectors for Android: Measuring the gap between in-the-lab and in-the-wild validation scenarios”. GitHub. Retrieved April 18, 2022, from https://github.com/MLDroid/csbd [54] Narayanan, A., Chandramohan, M., Chen, L. and Liu, Y., 2017. Contextaware, adaptive and scalable android malware detection through online learning (extended version). arXiv preprint arXiv:1706.00947. [55] Narayanan, A., Chandramohan, M., Chen, L. and Liu, Y., 2017. Contextaware, adaptive, and scalable android malware detection through online learning. IEEE Transactions on Emerging Topics in Computational Intelligence, 1(3), pp.157-175. [56] FSecureLABS. (n.d.). FSecureLABS/drozer: The leading security assessment framework for Android. GitHub. Retrieved April 18, 2022, from https://github.com/FSecureLABS/drozer [57] inf0junki3. (2017, October 6). Checking your Android device for known malware. Kudelski Security Research. Retrieved April 19, 2022, from 78 https://research.kudelskisecurity.com/2017/08/08/checking-your-androiddevice-for-known-malware/ [58] Kudelskisecurity. (n.d.). Kudelskisecurity/check all apks: Check all APK’s – scripts for checking your phone for malware. GitHub. Retrieved April 19, 2022, from https://github.com/kudelskisecurity/check all apks [59] Xaviha. (n.d.). Xaviha/Stormbreaker: Tool Social Engineering [Access Webcam Microphone OS Password Grabber Location Finder] with Ngrok. GitHub. Retrieved April 25, 2022, from https://github.com/xaviha/stormbreaker [60] Virustotal. (n.d.). Retrieved April 25, 2022, from https://www.virustotal.com/gui/home/upload [61] Herron, N., Glisson, W.B., McDonald, J.T. and Benton, R.K., 2021, January. Machine learning-based android malware detection using manifest permissions. Proceedings of the 54th Hawaii International Conference on System Sciences. [62] Hahn, S., Protsenko, M. and M¨uller, T., 2016. Comparative evaluation of machine learning-based malware detection on android. Sicherheit 2016-Sicherheit, Schutz und Zuverl¨assigkeit. [63] Anderson, H.S. and Roth, P., 2018. Ember: an open dataset for training static pe malware machine learning models. arXiv preprint arXiv:1804.04637. [64] Sewak, M., Sahay, S.K. and Rathore, H., 2018, August. An investigation of a deep learning-based malware detection system. In Proceedings of the 13th International Conference on Availability, Reliability, and Security (pp. 1-5). [65] Joyce, R.J., Amlani, D., Nicholas, C. and Raff, E., 2021. MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels. arXiv preprint arXiv:2111.15031. 79 [66] Li, J., Sun, L., Yan, Q., Li, Z., Srisa-An, W. and Ye, H., 2018. Significant permission identification for machine-learning-based android malware detection. IEEE Transactions on Industrial Informatics, 14(7), pp.3216-3225. [67] Mahindru, A. and Singh, P., 2017, February. Dynamic permissions based android malware detection using machine learning techniques. In Proceedings of the 10th innovations in software engineering conference (pp. 202-210). [68] Arslan, R.S., Do˘gru, ˙I.A. and Bari¸s¸ci, N., 2019. Permission-based malware detection system for android using machine learning techniques. International journal of software engineering and knowledge engineering, 29(01), pp.43-61. [69] Milosevic, N., Dehghantanha, A. and Choo, K.K.R., 2017. Machine learning aided Android malware classification. Computers Electrical Engineering, 61, pp.266-274. |
en_US |