dc.identifier.citation |
[1] Z. S. H. Abad, O. Karras, P. Ghazi, M. Glinz, G. Ruhe, and K. Schneider. What works better? a study of classifying requirements, 2017. [2] assem hawari. A dataset of mobile application reviews for classifying reviews into software engineering’s maintenance tasks using data mining techniques. In Mendeley Data, page V2, 2019. [3] C. Baker, L. Deng, S. Chakraborty, and J. Dehlinger. Automatic multi-class non-functional software requirements classification using neural networks. In 2019 IEEE 43rd Annual Computer Software and Applications Conference (COMPSAC), volume 2, pages 610–615, 2019. doi: 10.1109/COMPSAC.2019.10275. [4] J. Beel, B. Gipp, S. Langer, and C. Breitinger. paper recommender systems: A literature survey. International Journal on Digital Libraries, 17(4):305–338, 2016. [5] G. Boetticher. The promise repository of empirical software engineering data. http://promisedata. org/repository, 2007. [6] L. Chung, B. A. Nixon, E. Yu, and J. Mylopoulos. Non-functional requirements in software engineering, volume 5. Springer Science & Business Media, 2012. [7] J. Dąbrowski, E. Letier, A. Perini, and A. Susi. Mining user opinions to support requirement engineering: an empirical study. In International Conference on Advanced Information Systems Engineering, pages 401–416. Springer, 2020. [8] A. F. de Araújo and R. M. Marcacini. Re-bert: automatic extraction of software requirements from app reviews using bert language model. In Proceedings of the 36th Annual ACM Symposium on Applied Computing, pages 1321–1327, 2021. [9] A. Dekhtyar and V. Fong. Re data challenge: Requirements identification with word2vec and tensorflow. In 2017 IEEE 25th International Requirements Engineering Conference (RE), pages 484–489, 2017. doi: 10.1109/RE.2017.26. [10] A. Dekhtyar and V. Fong. Re data challenge: Requirements identification with word2vec and tensorflow. In 2017 IEEE 25th International Requirements Engineering Conference (RE), pages 484–489. IEEE, 2017. [11] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. [12] E. Dias Canedo and B. Cordeiro Mendes. Software requirements classification using machine learning algorithms. Entropy, 22(9):1057, 2020. [13] J. Eckhardt, A. Vogelsang, and D. M. Fernández. Are" non-functional" requirements really non-functional? an investigation of non-functional requirements in practice. In Proceedings of the 38th International Conference on Software Engineering, pages 832–842, 2016. 37 [14] G. Forman et al. An extensive empirical study of feature selection metrics for text classification. J. Mach. Learn. Res., 3(Mar):1289–1305, 2003. [15] P. B. Goes, M. Lin, and C.-m. Au Yeung. “popularity effect” in user-generated content: Evidence from online product reviews. Information Systems Research, 25(2):222–238, 2014. [16] M. Grandini, E. Bagli, and G. Visani. Metrics for multi-class classification: an overview. arXiv preprint arXiv:2008.05756, 2020. [17] E. C. Groen, S. Kopczyńska, M. P. Hauer, T. D. Krafft, and J. Doerr. Users—the hidden software product quality experts?: A study on how app users report quality aspects in online reviews. In 2017 IEEE 25th international requirements engineering conference (RE), pages 80–89. IEEE, 2017. [18] P. Gupta, S. Gandhi, and B. R. Chakravarthi. Leveraging transfer learning techniques-bert, roberta, albert and distilbert for fake review detection. In Forum for Information Retrieval Evaluation, pages 75–82, 2021. [19] E. Guzman and W. Maalej. How do users like this feature? a fine grained sentiment analysis of app reviews. In 2014 IEEE 22nd international requirements engineering conference (RE), pages 153–162. Ieee, 2014. [20] T. Hey, J. Keim, A. Koziolek, and W. F. Tichy. Norbert: Transfer learning for requirements classification. In 2020 IEEE 28th International Requirements Engineering Conference (RE), pages 169–179, 2020. doi: 10.1109/RE48521.2020.00028. [21] M. B. Ila and H. Kitapci. Selecting an effective information and communication technology architecture for an education system based on non-functional requirements. In 2014 IEEE 8th International Conference on Application of Information and Communication Technologies (AICT), pages 1–3. IEEE, 2014. [22] ISO/IEC 25010:2011. Systems and software engineering — Systems and software Quality Requirements and Evaluation (SQuaRE) — System and software quality models. Standard, International Organization for Standardization, 2011. [23] D. Kici, A. Bozanta, M. Cevik, D. Parikh, and A. Başar. Text classification on software requirements specifications using transformer models. In Proceedings of the 31st Annual International Conference on Computer Science and Software Engineering, pages 163–172, 2021. [24] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. [25] Z. Kurtanović and W. Maalej. Automatically classifying functional and non-functional requirements using supervised machine learning. In 2017 IEEE 25th International Requirements Engineering Conference (RE), pages 490–495. Ieee, 2017. [26] J. Lee, W. Yoon, S. Kim, D. Kim, S. Kim, C. H. So, and J. Kang. Biobert: a pre-trained biomedical language representation model for biomedical text mining. Bioinformatics, 36(4):1234–1240, 2020. 38 [27] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov. Roberta: A robustly optimized bert pretraining approach. arXiv preprint arXiv:1907.11692, 2019. [28] M. Lu and P. Liang. Automatic classification of non-functional requirements from augmented app user reviews. In Proceedings of the 21st International Conference on Evaluation and Assessment in Software Engineering, pages 344–353, 2017. [29] R. Navarro-Almanza, R. Juarez-Ramirez, and G. Licea. Towards supporting software engineering using deep learning: A case of software requirements classification. In 2017 5th International Conference in Software Engineering Research and Innovation (CONISOFT), pages 116–120. IEEE, 2017. [30] D. Pagano and W. Maalej. Ieee standard glossary of software engineering terminology. In IEEE Std 729-1983, page 1–84. IEEE, 1990. [31] D. Pagano and W. Maalej. User feedback in the appstore: An empirical study. In 2013 21st IEEE international requirements engineering conference (RE), pages 125–134. IEEE, 2013. [32] S. Panichella, A. Di Sorbo, E. Guzman, C. A. Visaggio, G. Canfora, and H. C. Gall. How can i improve my app? classifying user reviews for software maintenance and evolution. In 2015 IEEE international conference on software maintenance and evolution (ICSME), pages 281–290. IEEE, 2015. [33] G. Y. Quba, H. Al Qaisi, A. Althunibat, and S. AlZu’bi. Software requirements classification using machine learning algorithm’s. In 2021 International Conference on Information Technology (ICIT), pages 685–690. IEEE, 2021. [34] M. A. Rahman, M. A. Haque, M. N. A. Tawhid, and M. S. Siddik. Classifying non-functional requirements using rnn variants for quality software development. In Proceedings of the 3rd ACM SIGSOFT International Workshop on Machine Learning Techniques for Software Quality Evaluation, pages 25–30, 2019. [35] A. Rajaraman and J. D. Ullman. Mining of massive datasets. Cambridge University Press, 2011. [36] F. Rustam, A. Mehmood, M. Ahmad, S. Ullah, D. M. Khan, and G. S. Choi. Classification of shopify app user reviews using novel multi text features. IEEE Access, 8:30234–30244, 2020. [37] J. Slankas and L. Williams. Automated extraction of non-functional requirements in available documentation. In 2013 1st International workshop on natural language analysis in software engineering (NaturaLiSE), pages 9–16. IEEE, 2013. [38] J. Slankas, M. Riaz, J. T. King, and L. A. Williams. Discovering security requirements from natural language project artifacts. 2013. [39] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune bert for text classification? In China national conference on Chinese computational linguistics, pages 194–206. Springer, 2019. [40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages 5998–6008, 2017. 39 [41] C. Yi, Z. Jiang, X. Li, and X. Lu. Leveraging user-generated content for product promotion: the effects of firm-highlighted reviews. Information Systems Research, 30(3):711–725, 2019. [42] Y. Zhang, R. Jin, and Z.-H. Zhou. Understanding bag-of-words model: a statistical framework. International Journal of Machine Learning and Cybernetics, 1(1-4):43–52, 2010. |
en_US |