dc.identifier.citation |
[1] T. Brief, “RENEWABLE ENERGY OPTIONS FOR SHIPPING,” no. January, 2015. [2] W. Saidyleigh, “The Maritime Commons : Digital Repository of the World Investigation of auxiliary power potentials of solar photovoltaic applications on dry bulk carrier ships,” 2017. [3] IRENA, “Renewable Energy Options For Shipping - Technology Brief,” no. Januari, p. 60, 2015. [4] H. Gürsu, “Solar and wind powered concept boats: The example of volitan,” Metu J. Fac. Archit., vol. 31, no. 2, pp. 109–123, 2014, doi: 10.4305/METU.JFA.2014.2.6. [5] B. Allenström, “Wind propulsion Content :” [6] A. AIJJOU, “Wind Energy for Shipboard Electric Power Needs,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 9, no. 1.5, pp. 168–177, 2020, doi: 10.30534/ijatcse/2020/2491.52020. [7] A. Kukner and A. K. S. B. A. N. HALILBESE3, “Renewable Energy Options and an Assessment of WindBased Propulsion Systems for Small Crafts,” Sci. Bull. Nav. Acad., vol. 19, no. 2, pp. 39–47, 2016, doi: 10.21279/1454-864x-16-i2-006. [8] O. Schinas, H. H. Ross, and T. D. Rossol, “Financing green ships through export credit schemes,” Transp. Res. Part D Transp. Environ., vol. 65, pp. 300–311, 2018, doi: 10.1016/j.trd.2018.08.013. [9] K. Hochkirch and V. Bertram, “Maritime Technology and Research Wind-assisted propulsion : Economic and ecological considerations,” vol. 4, no. 3, 2022. [10] C. Nuchturee, T. Li, and H. Xia, “Energy efficiency of integrated electric propulsion for ships – A review,” Renewable and Sustainable Energy Reviews, vol. 134. 2020, doi: 10.1016/j.rser.2020.110145. [11] K. YİĞİT and B. ACARKAN, “an Examination of the Photovoltaic, Energy Storage, and Diesel Hybrid Power System for the Ship Applications,” Int. J. Adv. Automot. Technol., vol. 2, no. 2, pp. 78–88, 2018, doi: 10.15659/ijaat.18.04.925. [12] C. W. Mohd Noor, M. M. Noor, and R. Mamat, “Biodiesel as alternative fuel for marine diesel engine applications: A review,” Renew. Sustain. Energy Rev., vol. 94, no. February 2017, pp. 127–142, 2018, doi: 10.1016/j.rser.2018.05.031. [13] M. H. Khooban, M. Gheisarnejad, H. Farsizadeh, A. Masoudian, and J. Boudjadar, “A New Intelligent Hybrid Control Approach for DC-DC Converters in Zero-Emission Ferry Ships,” IEEE Trans. Power Electron., vol. 35, no. 6, pp. 5832–5841, Jun. 2020, doi: 10.1109/TPEL.2019.2951183. [14] H. N. Psaraftis, T. Zis, and S. Lagouvardou, “A comparative evaluation of market based measures for shipping decarbonization,” Marit. Transp. Res., vol. 2, p. 100019, 2021, doi: 10.1016/j.martra.2021.100019. [15] N. Peter, N. Alison, P. Biman, V. Joeli, and H. Elisabeth, “A review of sustainable sea-transport for Oceania : Providing context for renewable energy shipping for the Paci fi c,” vol. 43, pp. 283–287, 2014, doi: 10.1016/j.marpol.2013.06.009. [16] F. Zhao, W. Yang, W. W. Tan, W. Yu, J. Yang, and S. K. Chou, “Power management of vessel propulsion system for thrust efficiency and emissions mitigation,” Appl. Energy, vol. 161, pp. 124–132, Jan. 2016, doi: 10.1016/j.apenergy.2015.10.022. [17] H. Lan, S. Wen, Y. Y. Hong, D. C. Yu, and L. Zhang, “Optimal sizing of hybrid PV/diesel/battery in ship 46 power system,” Appl. Energy 2015, Vol. 158, Pages 26-34, vol. 158, pp. 26–34, Nov. 2015, doi: 10.1016/J.APENERGY.2015.08.031. [18] S. Liu, “Sustainable Fishery and Renewable Energy in Perspective of Sustainable Development Goals (SDGs): Re-visiting SDG Indicators 7.2.1 and 14.7.1,” Eur. J. Sustain. Dev., vol. 11, no. 1, pp. 101–101, Feb. 2022, doi: 10.14207/EJSD.2022.V11N1P101. [19] S. Yoshida, S. Ueno, N. Kataoka, H. Takakura, and T. Minemoto, “Estimation of global tilted irradiance and output energy using meteorological data and performance of photovoltaic modules,” Sol. Energy, vol. 93, pp. 90–99, 2013, doi: 10.1016/j.solener.2013.04.001. [20] I. Works, “Aquarius MRE : zero emissions propulsion and power for ships,” no. November, pp. 3–5, 2020. [21] I. Kobougias, E. Tatakis, and J. Prousalidis, “PV Systems Installed in Marine Vessels : Technologies and Specifications,” vol. 2013, no. i, 2013. [22] A. Kurniawan, “A Review of Solar-Powered Boat Development,” IPTEK J. Technol. Sci., vol. 27, no. 1, 2016, doi: 10.12962/j20882033.v27i1.761. [23] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, and H. Keppner, “Photovoltaic technology: The case for thinfilm solar cells,” Science (80-. )., vol. 285, no. 5428, pp. 692–698, 1999, doi: 10.1126/science.285.5428.692. [24] F. Xi, S. Issn, and N. Ivan, “PHOTOVOLTAIC TECHNOLOGY . THE FUTURE SOLUTION FOR SHIPS,” pp. 87–92, 2016. [25] C. A. Wolden et al., “Photovoltaic manufacturing: Present status, future prospects, and research needs,” J. Vac. Sci. Technol. A Vacuum, Surfaces, Film., vol. 29, no. 3, p. 030801, 2011, doi: 10.1116/1.3569757. [26] J. Il Kwak, S. H. Nam, L. Kim, and Y. J. An, “Potential environmental risk of solar cells: Current knowledge and future challenges,” J. Hazard. Mater., vol. 392, p. 122297, 2020, doi: 10.1016/j.jhazmat.2020.122297. [27] R. W. Miles, K. M. Hynes, and I. Forbes, “Photovoltaic solar cells: An overview of state-of-the-art cell development and environmental issues,” Prog. Cryst. Growth Charact. Mater., vol. 51, no. 1–3, pp. 1–42, 2005, doi: 10.1016/j.pcrysgrow.2005.10.002. [28] C. S. Durganjali, S. Bethanabhotla, S. Kasina, and D. S. Radhika, “Recent Developments and Future Advancements in Solar Panels Technology,” J. Phys. Conf. Ser., vol. 1495, no. 1, 2020, doi: 10.1088/1742- 6596/1495/1/012018. [29] M. V. Dambhare, B. Butey, and S. V. Moharil, “Solar photovoltaic technology: A review of different types of solar cells and its future trends,” J. Phys. Conf. Ser., vol. 1913, no. 1, 2021, doi: 10.1088/1742- 6596/1913/1/012053. [30] T. Ibn-Mohammed et al., “Perovskite solar cells: An integrated hybrid lifecycle assessment and review in comparison with other photovoltaic technologies,” Renew. Sustain. Energy Rev., vol. 80, no. November 2015, pp. 1321–1344, 2017, doi: 10.1016/j.rser.2017.05.095. [31] G. Gordillo, “Photoluminescence and photoconductivity studies on ZnxCd1-xS thin films,” Sol. Energy Mater. Sol. Cells, vol. 25, no. 1–2, pp. 41–49, 1992, doi: 10.1016/0927-0248(92)90015-H. [32] A. Mohammad Bagher, “Types of Solar Cells and Application,” Am. J. Opt. Photonics, vol. 3, no. 5, p. 94, 47 2015, doi: 10.11648/j.ajop.20150305.17. [33] P. N. Ciesielski et al., “Photosystem I - Based biohybrid photoelectrochemical cells,” Bioresour. Technol., vol. 101, no. 9, pp. 3047–3053, 2010, doi: 10.1016/j.biortech.2009.12.045. [34] O. Yehezkeli et al., “Integrated photosystem II-based photo-bioelectrochemical cells,” Nat. Commun., vol. 3, pp. 742–747, 2012, doi: 10.1038/ncomms1741. [35] D. J. Milliron, I. Gur, and A. P. Alivisatos, “Hybrid organic-nanocrystal solar cells,” MRS Bull., vol. 30, no. 1, pp. 41–44, 2005, doi: 10.1557/mrs2005.8. [36] S. E. Shaheen, D. S. Ginley, G. E. Jabbour, and G. Editors, “O rganic-Based Photovoltaics : Toward LowCost Power Generation,” vol. 30, no. January, pp. 10–19, 2005. [37] M. A. A. Al Mehedi and M. T. Iqbal, “Optimal Design, Dynamic Modeling and Analysis of a Hybrid Power System for a Catamarans Boat in Bangladesh,” Eur. J. Electr. Eng. Comput. file///C/Users/yankuba/Desktop/ships daa0d3a76e34065.pdfScience, vol. 5, no. 1, pp. 48–61, 2021, doi: 10.24018/ejece.2021.5.1.294. [38] S. N. L. . U. S. D. of T. . U. S. D. of E. O. of S. and T. Information., “Current Status of the San Francisco Bay Area Renewable Energy Electric Vessel with Zero Emissions (SF-BREEZE) Feasibility Study,” 2016, [Online]. Available: http://www.worldcat.org/title/current-status-of-the-san-francisco-bay-area-renewableenergy-electric-vessel-with-zero-emissions-sf-breeze-feasibilitystudy/oclc/982481059&referer=brief_results. [39] K. SHARMA and P. Syal, “A Review on Solar Powered Boat Design,” Int. Res. J. Adv. Sci. Hub, vol. 3, no. Special Issue 9S, pp. 1–10, 2021, doi: 10.47392/irjash.2021.241. [40] W. Ze, “THE POSSIBILITIES OF FISHING CUTTER ENERGETIC EFFICIENCY.” [41] K. Manickavasagam, N. K. Thotakanama, and V. Puttaraj, “Intelligent energy management system for renewable energy driven ship,” IET Electr. Syst. Transp., vol. 9, no. 1, pp. 24–34, 2019, doi: 10.1049/ietest.2018.5022. [42] J. Esteve-Pérez and J. E. Gutiérrez-Romero, “Renewable energy supply to ships at port,” Sixth Int. Work. Mar. Technol., no. x, pp. 171–174, 2015, [Online]. Available: www.bp.com. [43] Y. Sun, X. Yan, C. Yuan, and X. Bai, “Insight into tribological problems of green ship and corresponding research progresses,” Friction, vol. 6, no. 4, pp. 472–483, 2018, doi: 10.1007/s40544-017-0184-4. [44] P. Cheng, N. Liang, R. Li, H. Lan, and Q. Cheng, “Analysis of influence of ship roll on ship power system with renewable energy,” Energies, vol. 13, no. 1, 2019, doi: 10.3390/en13010001. [45] R. D. Ionescu, I. Szava, S. Vlase, M. Ivanoiu, and R. Munteanu, “Innovative Solutions for Portable Wind Turbines, Used on Ships,” Procedia Technol., vol. 19, pp. 722–729, 2015, doi: 10.1016/j.protcy.2015.02.102. [46] V. Alfonsín, A. Suarez, A. Cancela, A. Sanchez, and R. Maceiras, “Modelization of hybrid systems with hydrogen and renewable energy oriented to electric propulsion in sailboats,” Int. J. Hydrogen Energy, vol. 39, no. 22, pp. 11763–11773, 2014, doi: 10.1016/j.ijhydene.2014.05.104. [47] D. W. Kite and P. O. See, “Wind-assisted propulsion.” 48 [48] A. G. Koumentakos, “Developments in Electric and Green Marine Ships,” Appl. Syst. Innov. 2019, Vol. 2, Page 34, vol. 2, no. 4, p. 34, Oct. 2019, doi: 10.3390/ASI2040034. [49] A. Windkites, “Ship Propulsion Strategies by using Wind Energy,” no. 2006, 2016. [50] A. Schönborn, “Combination of propulsive thrust and rotational power for ships from a cyclic pitch Darrieus rotor sail,” Sustain. Energy Technol. Assessments, vol. 52, Aug. 2022, doi: 10.1016/j.seta.2022.102008. [51] K. M. Gilje, “Airborne Wind Turbines for Ship Propulsion,” no. June, 2013. [52] R. Lu and J. W. Ringsberg, “Ship energy performance study of three wind-assisted ship propulsion technologies including a parametric study of the Flettner rotor technology,” Ships Offshore Struct., vol. 15, no. 3, pp. 249–258, 2020, doi: 10.1080/17445302.2019.1612544. [53] W. Lhomme and J. P. Trovão, “Zero-emission casting-off and docking maneuvers for series hybrid excursion ships,” Energy Convers. Manag., vol. 184, pp. 427–435, Mar. 2019, doi: 10.1016/J.ENCONMAN.2019.01.052. [54] H. I. Copuroglu and E. Pesman, “Analysis of Flettner Rotor ships in beam waves,” Ocean Eng., vol. 150, pp. 352–362, Feb. 2018, doi: 10.1016/j.oceaneng.2018.01.004. [55] P. Zhang, J. Lozano, and Y. Wang, “Using Flettner Rotors and Parafoil as alternative propulsion systems for bulk carriers,” J. Clean. Prod., vol. 317, Oct. 2021, doi: 10.1016/j.jclepro.2021.128418. [56] L. Talluri, D. K. Nalianda, K. G. Kyprianidis, T. Nikolaidis, and P. Pilidis, “Techno economic and environmental assessment of wind assisted marine propulsion systems,” Ocean Eng., vol. 121, no. July, pp. 301–311, 2016, doi: 10.1016/j.oceaneng.2016.05.047. [57] O. B. Inal, J. F. Charpentier, and C. Deniz, “Hybrid power and propulsion systems for ships: Current status and future challenges,” Renew. Sustain. Energy Rev., vol. 156, Mar. 2022, doi: 10.1016/j.rser.2021.111965. [58] M. Gaber, S. H. El-Banna, M. S. Hamad, and M. Eldabah, “Performance Enhancement of Ship Hybrid Power System Using Photovoltaic Arrays,” 2020 IEEE PES/IAS PowerAfrica, PowerAfrica 2020, 2020, doi: 10.1109/PowerAfrica49420.2020.9219808. [59] R. D. Geertsma, R. R. Negenborn, K. Visser, and J. J. Hopman, “Design and control of hybrid power and propulsion systems for smart ships: A review of developments,” Appl. Energy, vol. 194, pp. 30–54, May 2017, doi: 10.1016/J.APENERGY.2017.02.060. [60] E. Skjong, T. A. Johansen, M. Molinas, and A. J. Sorensen, “Approaches to Economic Energy Management in Diesel-Electric Marine Vessels,” IEEE Trans. Transp. Electrif., vol. 3, no. 1, pp. 22–35, 2017, doi: 10.1109/TTE.2017.2648178. [61] M. N. Nyanya, H. B. Vu, A. Schönborn, and A. I. Ölçer, “Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier,” Sustain. Energy Technol. Assessments, vol. 47, p. 101397, Oct. 2021, doi: 10.1016/J.SETA.2021.101397. [62] C. Ghenai, M. Bettayeb, B. Brdjanin, and A. Kadir, “Case Studies in Thermal Engineering Hybrid solar PV / PEM fuel Cell / Diesel Generator power system for cruise ship : A case study in Stockholm , Sweden,” Case Stud. Therm. Eng., vol. 14, no. June, p. 100497, 2019, doi: 10.1016/j.csite.2019.100497. [63] F. Diab, H. Lan, and S. Ali, “Novel comparison study between the hybrid renewable energy systems on land 49 and on ship,” Renew. Sustain. Energy Rev., vol. 63, pp. 452–463, 2016, doi: 10.1016/j.rser.2016.05.053. [64] M. N. Nyanya, H. B. Vu, A. Schönborn, and A. I. Ölçer, “Wind and solar assisted ship propulsion optimisation and its application to a bulk carrier,” Sustain. Energy Technol. Assessments, vol. 47, no. September 2020, 2021, doi: 10.1016/j.seta.2021.101397. [65] M. Gaber, S. H. El-Banna, M. Eldabah, and M. S. Hamad, “Model and Control of Naval Ship Power System by the Concept of All-Electric Ships Based on Renewable Energy,” 2019 21st Int. Middle East Power Syst. Conf. MEPCON 2019 - Proc., pp. 1235–1240, 2019, doi: 10.1109/MEPCON47431.2019.9007914. [66] P. Cheng, N. Liang, R. Li, H. Lan, and Q. Cheng, “Analysis of Influence of Ship Roll on Ship Power System with Renewable Energy,” Energies 2019, Vol. 13, Page 1, vol. 13, no. 1, p. 1, Dec. 2019, doi: 10.3390/EN13010001. [67] P. A. Østergaard, N. Duic, Y. Noorollahi, H. Mikulcic, and S. Kalogirou, “Sustainable development using renewable energy technology,” Renew. Energy, vol. 146, pp. 2430–2437, 2020, doi: 10.1016/j.renene.2019.08.094. [68] A. Cotorcea and M. Ristea, “‘ Mircea cel Batran ’ Naval Academy Scientific Bulletin , Volume XV II – 2014 – Issue 1 Published by ‘ Mircea cel Batran ’ Naval Academy Press , Constanta , Romania PRESENT AND FUTURE OF RENEWABLE ENERGY SOURCES ONBOARD SHIPS . CASE STUDY : SOLAR – THERMA,” vol. XV, no. 1, pp. 0–5, 2014. [69] D. Lee et al., “Development of a mobile robotic system for working in the double-hulled structure of a ship,” Robot. Comput. Integr. Manuf., vol. 26, no. 1, pp. 13–23, 2010, doi: 10.1016/j.rcim.2009.01.003. [70] J. M. Varela, J. M. Rodrigues, and C. G. Soares, “3D simulation of ship motions to support the planning of rescue operations on damaged ships,” Procedia Comput. Sci., vol. 51, no. 1, pp. 2397–2405, 2015, doi: 10.1016/j.procs.2015.05.416. [71] G. Rohani and M. Nour, “Techno-economical analysis of stand-alone hybrid renewable power system for Ras Musherib in United Arab Emirates,” Energy, vol. 64, pp. 828–841, 2014, doi: 10.1016/j.energy.2013.10.065. [72] E. Akyuz and M. Celik, “A methodological extension to human reliability analysis for cargo tank cleaning operation on board chemical tanker ships,” Saf. Sci., vol. 75, pp. 146–155, 2015, doi: 10.1016/j.ssci.2015.02.008. [73] B. Zhu and D. M. Frangopol, “Reliability assessment of ship structures using Bayesian updating,” Eng. Struct., vol. 56, pp. 1836–1847, 2013, doi: 10.1016/j.engstruct.2013.07.024. [74] A. Decò, D. M. Frangopol, and B. Zhu, “Reliability and redundancy assessment of ships under different operational conditions,” Eng. Struct., vol. 42, pp. 457–471, 2012, doi: 10.1016/j.engstruct.2012.04.017. [75] E. Akyuz and M. Celik, “Computer-Based Human Reliability Analysis Onboard Ships,” Procedia - Soc. Behav. Sci., vol. 195, pp. 1823–1832, 2015, doi: 10.1016/j.sbspro.2015.06.398. [76] C. H. Whitlock et al., “Release 3 NASA Surface Meteorology and Solar Energy Data Set for Renewable Energy Industry Use,” Proc. Rise Shine, vol. 1, no. 11, pp. 1829–1841, 2000, [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/cbdv.200490137/abstract%5Cnhttp://power.larc.nasa.gov/publica 50 tions/R_S2000paper.pdf |
en_US |