| Login
dc.contributor.author | Ullah, Mir Ashib | |
dc.contributor.author | Khorshed, Fazlul Rafeeun | |
dc.contributor.author | Hoque, Sadman | |
dc.date.accessioned | 2023-04-07T09:06:51Z | |
dc.date.available | 2023-04-07T09:06:51Z | |
dc.date.issued | 2022-05-31 | |
dc.identifier.citation | [1]N. Rahmanian, M. Bozorgmehr, M. Torabi, A. Akbari, and A. H. Zarnani, “Cell separation: Potentials and pitfalls,” Prep. Biochem. Biotechnol., vol. 47, no. 1, pp. 38–51, 2017, doi: 10.1080/10826068.2016.1163579. [2]Y. H. Ghallab and W. Badawy, Lab-on-a-chip: Techniques, Circuits, and Biomedical Applications. 2010. [3]M. Kumar, A. Kumar, S. D. George, and K. Singh, “A novel microfluidic device with tapered sidewall electrodes for efficient ternary blood cells (WBCs, RBCs and PLTs) separation,” Meas. Sci. Technol., vol. 32, no. 11, 2021, doi: 10.1088/1361-6501/ac0f24. [4]W. Waheed, A. Alazzam, B. Mathew, E. A. Nada, and A. N. Al Khateeb, “A scalabale microfluidic device for switching of microparticles using dielectrophoresis,” ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 10, pp. 1–6, 2018, doi: 10.1115/IMECE201887664. [5] D. G. Grier, “A revolution in optical manipulation,” Nature, vol. 424, no. 6950, pp. 810– 816, 2003, doi: 10.1038/nature01935. [6]K. E. McCloskey, J. J. Chalmers, and M. Zborowski, “Magnetic Cell Separation: Characterization of Magnetophoretic Mobility,” Anal. Chem., vol. 75, no. 24, pp. 6868– 6874, 2003, doi: 10.1021/ac034315j. [7]A. Nilsson, F. Petersson, H. Jönsson, and T. Laurell, “Acoustic control of suspended particles in micro fluidic chips,” Lab Chip, vol. 4, no. 2, pp. 131–135, 2004, doi: 10.1039/b313493h. [8] A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Angular Momentum, vol. 11, no. 5, pp. 196–198, 2016, doi: 10.1364/ol.11.000288. [9] R. M. J. Palmer, A. G. Ferrige, and S. * Moncada, “Optical trapping and mipulation of single cells using infrared laser beam,” Nature, vol. 327, no. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor, pp. 524–526, 1987. [10] D. Facts, Dielectrophoresis (BOOK). 2005. [11] Jones, T. B. (1995) Electromechanics of Particles, Cambridge University Press, Cambridge. [12] Bruus, H. (2012) Acoustofluidics 7: The acoustic radiation force on small particles. Lab Chip 12, 1014–1021.} 54 [13] J. Voldman, “Electrical forces for microscale cell manipulation,” Annu. Rev. Biomed. Eng., vol. 8, pp. 425–454, 2006, doi: 10.1146/annurev.bioeng.8.061505.095739. [14] J. Wang et al., “Towards disposable lab-on-a-chip: Poly(methylmethacrylate) microchip electrophoresis device with electrochemical detection,” Electrophoresis, vol. 23, no. 4, pp. 596–601, 2002, doi: 10.1002/1522-2683(200202)23:4<596::AIDELPS596>3.0.CO;2-C. [15] J. A. Ferguson, T. C. Boles, C. P. Adams, and D. R. Walt, “A fiber-optic DNA biosensor microarray for the analysis of gene expression,” Nat. Biotechnol., vol. 14, no. 13, pp. 1681– 1684, 1996, doi: 10.1038/nbt1296-1681. [16] S. Fiedler, S. G. Shirley, and T. Schnelle, “a Microsystem,” vol. 70, no. 9, pp. 1909– 1915, 1998. [17] M. C. Jo and R. Guldiken, “Active density-based separation using standing surface acoustic waves,” Sensors Actuators, A Phys., vol. 187, pp. 22–28, 2012, doi: 10.1016/j.sna.2012.08.020. [18] W. Waheed, A. Alazzam, B. Mathew, N. Christoforou, and E. Abu-Nada, “Lateral fluid flow fractionation using dielectrophoresis (LFFF-DEP) for size-independent, label-free isolation of circulating tumor cells,” J. Chromatogr. B Anal. Technol. Biomed. Life Sci., vol. 1087–1088, no. November 2017, pp. 133–137, 2018, doi: 10.1016/j.jchromb.2018.04.046. [19] H. K. Chin, C. L. Yee, I. Rodriguez, C. Yang, and K. Youcef-Toumi, “Cell motion model for moving dielectrophoresis,” Anal. Chem., vol. 80, no. 14, pp. 5454–5461, 2008, doi: 10.1021/ac800947e. [20] R. Pethig and G. H. Markx, “Applications of dielectrophoresis in biotechnology,” Trends Biotechnol., vol. 15, no. 10, pp. 426–432, 1997, doi: 10.1016/S0167- 7799(97)01096-2. [21] M. P. Hughes, H. Morgan, F. J. Rixon, J. P. H. Burt, and R. Pethig, “Manipulation of herpes simplex virus type 1 by dielectrophoresis,” Biochim. Biophys. Acta - Gen. Subj., vol. 1425, no. 1, pp. 119–126, 1998, doi: 10.1016/S0304-4165(98)00058-0. [22] B. Marrow et al., “Cutting Edge Communication,” vol. 489, pp. 473–489, 2003. [23] D. Hu, H. Liu, Y. Tian, Z. Li, and X. Cui, “Sorting Technology for Circulating Tumor Cells Based on Microfluidics,” ACS Comb. Sci., vol. 22, no. 12, pp. 701–711, 2020, doi: 10.1021/acscombsci.0c00157. 55 [24] L. E. Cortés-Hernández, Z. Eslami-S, and C. Alix-Panabières, “Circulating tumor cell as the functional aspect of liquid biopsy to understand the metastatic cascade in solid cancer,” Mol. Aspects Med., vol. 72, no. July, pp. 0–1, 2020, doi: 10.1016/j.mam.2019.07.008. [25] Z. Çăglayan, Y. D. Yalçın, and H. Külah, “A prominent cell manipulation technique in biomems: Dielectrophoresis,” Micromachines, vol. 11, no. 11, 2020, doi: 10.3390/mi11110990. [26] J. Zhang, K. Chen, and Z. H. Fan, Circulating Tumor Cell Isolation and Analysis, 1st ed., vol. 75. Elsevier Inc., 2016. [27] M. Al-Mahasneh, M. Aljarrah, T. Rababah, and M. Alu’datt, “Application of Hybrid Neural Fuzzy System (ANFIS) in Food Processing and Technology,” Food Eng. Rev., vol. 8, no. 3, pp. 351–366, 2016, doi: 10.1007/s12393-016-9141-7. [28] J. S. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man Cybern., vol. 23, no. 3, pp. 665–685, 1993, doi: 10.1109/21.256541. [29] S. Krishna, F. Alnaimat, A. Hilal-Alnaqbi, S. Khashan, and B. Mathew, “Dielectrophoretic microfluidic device for separating microparticles based on size with submicron resolution,” Micromachines, vol. 11, no. 7, pp. 1–17, 2020, doi: 10.3390/MI11070653. [30] Y. Zhang and X. Chen, “Dielectrophoretic microfluidic device for separation of red blood cells and platelets: a model-based study,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 2, 2020, doi: 10.1007/s40430-020-2169-x. [31] F. Alnaimat et al., “Model-Based Performance Study of Dielectrophoretic Flow Separator,” IEEE Sensors Lett., vol. 3, no. 6, pp. 2016–2019, 2019, doi: 10.1109/LSENS.2019.2915101. [32] M. Aghaamoo, A. Aghilinejad, X. Chen, and J. Xu, “On the design of deterministic dielectrophoresis for continuous separation of circulating tumor cells from peripheral blood cells,” Electrophoresis, vol. 40, no. 10, pp. 1486–1493, 2019, doi: 10.1002/elps.201800459. [33] I. Ertugrul and O. Ulkir, “Dielectrophoretic separation of platelet cells in a microfluidic channel and optimization with fuzzy logic,” RSC Adv., vol. 10, no. 56, pp. 33731–33738, 2020, doi: 10.1039/d0ra06271e. [34] A. Al-Hmouz, J. Shen, R. Al-Hmouz, and J. Yan, “Modeling and simulation of an Adaptive Neuro-Fuzzy Inference System (ANFIS) for mobile learning,” IEEE Trans. Learn. Technol., vol. 5, no. 3, pp. 226–237, 2012, doi: 10.1109/TLT.2011.36. [35] Herbert A. Pohl, "The Motion and Precipitation of Suspensoids in Divergent Electric Fields", Journal of Applied Physics 22, 869-871 (1951) https://doi: 10.1063/1.1700065 56 [36] Muth, E. Ueber die Erscheinung der Perlschnurkettenbildung von Emulsionspartikelchen unter Einwirkung eines Wechselfeldes. Kolloid-Zeitschrift 41, 97–102 (1927). doi: 10.1007/BF01428586 [37] SCHWAN HP. Electrical properties of tissue and cell suspensions. Adv Biol Med Phys. 1957;5:147-209. doi: 10.1016/b978-1-4832-3111-2.50008-0. PMID: 13520431. [38] Pohl HA, Hawk I. Separation of living and dead cells by dielectrophoresis. Science. 1966 Apr 29;152(3722):647-9. doi: 10.1126/science.152.3722.647-a. PMID: 17779503. [39] Joe S. Crane and Herbert A. Pohl 1968 J. Electrochem. Soc. 115 584 [40] Y. W. Lu, C. Sun, Y. C. Kao, C. L. Hung, and J. Y. Juang, “Dielectrophoretic crossover frequency of single particles: Quantifying the effect of surface functional groups and electrohydrodynamic flow drag force,” Nanomaterials, vol. 10, no. 7, pp. 1–22, 2020, doi: 10.3390/nano10071364. [41] O. F. Mossotti, Mem. Mat. Fis. Soc. Ital. Sci. Modena 24(2), 49 (1850). [42] Nurdan Erdem, Yagmur Yildizhan, and Meltem Elitas, “A Numerical Approach for Dielectrophoretic Characterization and Separation of Human Hematopoietic Cells,” Int. J. Eng. Res., vol. V6, no. 04, pp. 1079–1082, 2017, doi: 10.17577/ijertv6is040730. [43] J. Cottet, O. Fabregue, C. Berger, F. Buret, P. Renaud, and M. Frénéa-Robin, “MyDEP: A New Computational Tool for Dielectric Modeling of Particles and Cells,” Biophys. J., vol. 116, no. 1, pp. 12–18, 2019, doi: 10.1016/j.bpj.2018.11.021. [44] Y. Zhang and X. Chen, “Blood cells separation microfluidic chip based on dielectrophoretic force,” J. Brazilian Soc. Mech. Sci. Eng., vol. 42, no. 4, pp. 1–11, 2020, doi: 10.1007/s40430-020-02284-8. [45] C. L. Kumar, A. V. Juliet, B. Ramakrishna, S. Chakraborty, M. A. Mohammed, and K. A. Sunny, “Computational Microfluidic Channel for Separation of Escherichia coli from Blood-Cells,” Comput. Mater. Contin., vol. 67, no. 2, pp. 1369–1384, 2021, doi: 10.32604/cmc.2021.015116. [46] Y. C. Lim; A. Z. Kouzani; W. Duan (2010). Lab-on-a-chip: a component view. , 16(12), 1995–2015. doi:10.1007/s00542-010-1141-6. [47] Mohammed, Mazher Iqbal; Haswell, Steven; Gibson, Ian (2015). Lab-on-a-chip or Chipin-a-lab: Challenges of Commercialization Lost in Translation. Procedia Technology, 20(), 54–59. doi:10.1016/j.protcy.2015.07.010 [48] M. Farré, L. Kantiani, and D. Barceló, Microfluidic Devices: Biosensors. 2012. [49] J. W. Hong and S. R. Quake, “Integrated nanoliter systems,” Nat. Biotechnol., vol. 21, no. 10, pp. 1179–1183, 2003, doi: 10.1038/nbt871. 57 [50] Weibel, Douglas B.; Kruithof, Maarten; Potenta, Scott; Sia, Samuel K.; Lee, Andrew; Whitesides, George M. (2005). Torque-Actuated Valves for Microfluidics. Analytical Chemistry, 77(15), 4726–4733. doi:10.1021/ac048303p [51] Günther, Axel; Jhunjhunwala, Manish; Thalmann, Martina; Schmidt, Martin A.; Jensen, Klavs F. (2005). Micromixing of Miscible Liquids in Segmented Gas−Liquid Flow. Langmuir, 21(4), 1547–1555. doi:10.1021/la0482406 [52] Garstecki, Piotr; Fischbach, Michael A.; Whitesides, George M. (2005). Design for mixing using bubbles in branched microfluidic channels. Applied Physics Letters, 86(24), 244108– . doi:10.1063/1.1946902 [53] Stone, H.A.; Stroock, A.D.; Ajdari, A. (2004). ENGINEERING FLOWS IN SMALL DEVICES. , 36(1), 381–411. doi:10.1146/annurev.fluid.36.050802.122124 [54] Squires, Todd; Quake, Stephen (2005). Microfluidics: Fluid physics at the nanoliter scale. , 77(3), 977–1026. doi:10.1103/revmodphys.77.977 [55] Whitesides, George M. (2006). The origins and the future of microfluidics. , 442(7101), 368–373. doi:10.1038/nature05058 [56] Wheeler, Aaron R.; Throndset, William R.; Whelan, Rebecca J.; Leach, Andrew M.; Zare, Richard N.; Liao, Yish Hann; Farrell, Kevin; Manger, Ian D.; Daridon, Antoine (2003). Microfluidic Device for Single-Cell Analysis. Analytical Chemistry, 75(14), 3581–3586. doi:10.1021/ac0340758 [57] Gale, Bruce; Jafek, Alexander; Lambert, Christopher; Goenner, Brady; Moghimifam, Hossein; Nze, Ugochukwu; Kamarapu, Suraj (2018). A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions, 3(3), 60–. doi:10.3390/inventions3030060 [58] Adelina-Gabriela Niculescu; Cristina Chircov; Alexandra Cătălina Bîrcă; Alexandru Mihai Grumezescu; (2021). Fabrication and Applications of Microfluidic Devices: A Review. International Journal of Molecular Sciences, (), -. doi: 10.3390 / ijms22042011 [59] Guckenberger, David J.; de Groot, Theodorus E.; Wan, Alwin M. D.; Beebe, David J.; Young, Edmond W. K. (2015). Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip, 15(11), 2364–2378. doi:10.1039/c5lc00234f [60] L. A. Zadeh, “Fuzzy logic,” Comput. Complex. Theory, Tech. Appl., vol. 9781461418, pp. 1177–1200, 2013, doi: 10.1007/978-1-4614-1800-9_73. [61] R. Pethig, “Dielectrophoresis: Status of the theory, technology, and applications,” Biomicrofluidics, vol. 4, no. 2, pp. 1–35, 2010, doi: 10.1063/1.3456626. 58 [62] E. Chiriac, M. Avram, and C. Bălan, “Manipulation of particles using dielectrophoresis in a microchannel,” Rom. J. Inf. Sci. Technol., vol. 24, no. 2, pp. 213–221, 2021. [63] Y. Guan et al., “Dielectrophoresis separation of platelets using a novel zigzag microchannel,” Micromachines, vol. 11, no. 10, 2020, doi: 10.3390/mi11100890. [64] U. Pliquett, “Joule heating during solid tissue electroporation,” Med. Biol. Eng. Comput., vol. 41, no. 2, pp. 215–219, 2003, doi: 10.1007/BF02344892. | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1821 | |
dc.description | Supervised by Dr. Md. Ruhul Amin, Department of Electrical and Electronic Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2022. | en_US |
dc.description.abstract | The traditional isolation process of Circulating Tumor Cells (CTCs) is a huge technical hurdle. In this work, simple electrode arrangements are proposed that utilizes Dielectrophoresis and Fluid Dynamics to separate CTCs from blood cells that can be used effectively in microfluidic channels. Dielectrophoresis mechanism aided the microfluidic channel that has been made considering the Clausius-Mossotti (CM) factor, electrical and other mechanical properties of RBC and CTC particles to accumulate the rare CTCs being isolated from blood cells to a specified outlet. Single to multi-phase separation-based microfluidic channels have been proposed one of them can separate CTCs from RBCs in a comparatively low voltage of 8 V peak-to-peak in the first phase separation region and 4 V peak-to-peak in the second phase separation region with 100 kHz Alternating Current (AC) for the inlet sample stream speed of 420 μm/s. The other microfluidic channel can separate CTCs from WBCs and RBCs in a comparatively low voltage of 6-8 V peak-to-peak with 100 kHz Alternating Current (AC) for the inlet sample stream speed of 150 μm/s. A comparative analysis with microfluidic channels with single and multi-phase separation and different electrode arrangements by computer-assisted multi-physics simulations using Finite Element Method (FEM) with various governing parameters using COMSOL, MATLAB, and MyDEP software has been done in this study to validate the performance of the proposed microfluidic channels. The proposed microfluidic channels have achieved 100% separation efficiency (SE) and 100% separation purity (SP) while separating CTCs from different blood cells. Analysis of the inputs and outputs from the simulation models have been done to suggest specific values of inputs for the most efficient separation of the channels through Adaptive Neuro-Fuzzy Inference System (ANFIS) where two machine learning algorithms were used to give an overview of the microfluidic channel’s input-output relationship. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | ANFIS, Clausius-Mossotti factor, Dielectrophoresis, Fluid dynamics, Lab-on-a-chip, Microfluidic device. | en_US |
dc.title | Microfluidic Channels for Separation of Circulating Tumor Cells from Blood cells Using Dielectrophoresis and Performance Analysis Using ANFIS | en_US |
dc.type | Thesis | en_US |