A CFD Study on Comparison of Heat Transfer Performance of Water based Graphene Nanoplatelets Nanofluids and Multiwalled Carbon Nanotubes Nanofluids in a Concentric Tube Heat Exchanger

Show simple item record

dc.contributor.author Hoq, MD Zahinul
dc.date.accessioned 2023-04-11T06:15:33Z
dc.date.available 2023-04-11T06:15:33Z
dc.date.issued 2022-05-30
dc.identifier.citation [1] W. Yu, H. Xie, L. Chen, and Y. Li, “Enhancement of thermal conductivity of kerosene-based Fe3O4 nanofluids prepared via phase-transfer method,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 355, no. 1–3, pp. 109–113, 2010, doi: 10.1016/j.colsurfa.2009.11.044. [2] K. Wusiman, H. Jeong, K. Tulugan, H. Afrianto, and H. Chung, “Thermal performance of multi-walled carbon nanotubes (MWCNTs) in aqueous suspensions with surfactants SDBS and SDS,” Int. Commun. Heat Mass Transf., vol. 41, pp. 28–33, 2013, doi: 10.1016/j.icheatmasstransfer.2012.12.002. [3] Y. Li, J. Zhou, S. Tung, E. Schneider, and S. Xi, “A review on development of nanofluid preparation and characterization,” Powder Technol., vol. 196, no. 2, pp. 89–101, 2009, doi: 10.1016/j.powtec.2009.07.025. [4] W. Yu, H. Xie, and W. Chen, “Experimental investigation on thermal conductivity of nanofluids containing graphene oxide nanosheets,” J. Appl. Phys., vol. 107, no. 9, 2010, doi: 10.1063/1.3372733. [5] A. Naddaf and S. Zeinali Heris, “Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes,” Int. Commun. Heat Mass Transf., vol. 95, pp. 116–122, 2018, doi: 10.1016/j.icheatmasstransfer.2018.05.004. [6] E. Sadeghinezhad et al., “A comprehensive review on graphene nanofluids: Recent research, development and applications,” Energy Convers. Manag., vol. 111, pp. 466–487, 2016, doi: 10.1016/j.enconman.2016.01.004. [7] M. M. Sarafraz, B. Yang, O. Pourmehran, M. Arjomandi, and R. Ghomashchi, “Fluid and heat transfer characteristics of aqueous graphene nanoplatelet (GNP) nanofluid in a microchannel,” Int. Commun. Heat Mass Transf., vol. 107, pp. 24–33, 2019, doi: 10.1016/j.icheatmasstransfer.2019.05.004. [8] U. Calviño, J. P. Vallejo, M. H. Buschmann, J. Fernández-seara, and L. Lugo, “Analysis of heat transfer characteristics of a GnP aqueous nanofluid through a double-tube heat exchanger,” Nanomaterials, vol. 11, no. 4, 2021, doi: 10.3390/nano11040844. [9] O. Almatar AbdRabbuh et al., “An experimental investigation of eco-friendly treated GNP heat transfer growth: circular and square conduit comparison,” J. Therm. Anal. Calorim., vol. 145, no. 1, pp. 139–151, 2021, doi: 10.1007/s10973-020-09652-5. [10] M. Mehrali et al., “Effect of specific surface area on convective heat transfer of graphene nanoplatelet aqueous nanofluids,” Exp. Therm. Fluid Sci., vol. 68, pp. 100–108, 2015, doi: 10.1016/j.expthermflusci.2015.03.012. [11] A. Ghozatloo, A. Rashidi, and M. Shariaty-Niassar, “Convective heat transfer enhancement of graphene nanofluids in shell and tube heat exchanger,” Exp. Therm. Fluid Sci., vol. 53, pp. 136–141, 2014, doi: 10.1016/j.expthermflusci.2013.11.018. Page | 49 [12] M. Naraki, S. M. Peyghambarzadeh, S. H. Hashemabadi, and Y. Vermahmoudi, “Parametric study of overall HTC of CuO/water nanofluids in a car radiator,” Int. J. Therm. Sci., vol. 66, pp. 82–90, 2013, doi: 10.1016/j.ijthermalsci.2012.11.013. [13] A. M. Hussein, K. V. Sharma, R. A. Bakar, and K. Kadirgama, “Heat Transfer Enhancement with Nanofluids – A Review,” J. Mech. Eng. Sci., vol. 4, no. June, pp. 452–461, 2013, doi: 10.15282/jmes.4.2013.9.0042. [14] G. Huminic and A. Huminic, “Heat transfer characteristics in double tube helical heat exchangers using nanofluids,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4280–4287, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.05.017. [15] X. Yimin and L. Qiang, “SCIENCE IN CHINA (Series E) Convective heat transfer and flow characteristics of Cu-water nanofluid,” Convect. heat Transf., vol. 45, no. 4, 2002. [16] W. Duangthongsuk and S. Wongwises, “Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger,” Int. J. Heat Mass Transf., vol. 52, no. 7–8, pp. 2059– 2067, 2009, doi: 10.1016/j.ijheatmasstransfer.2008.10.023. [17] C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al2O3-water nanofluid for an electronic liquid cooling system,” Appl. Therm. Eng., vol. 27, no. 8–9, pp. 1501–1506, 2007, doi: 10.1016/j.applthermaleng.2006.09.028. [18] M. Zarringhalam, A. Karimipour, and D. Toghraie, “Experimental study of the effect of solid volume fraction and Reynolds number on HTC and pressure drop of CuO-Water nanofluid,” Exp. Therm. Fluid Sci., vol. 76, pp. 342–351, 2016, doi: 10.1016/j.expthermflusci.2016.03.026. [19] S. Baskar, M. Chandrasekaran, T. Vinod Kumar, P. Vivek, and L. Karikalan, “Experimental studies on convective HTC of water/ethylene glycol-carbon nanotube nanofluids,” Int. J. Ambient Energy, vol. 41, no. 3, pp. 296–299, 2020, doi: 10.1080/01430750.2018.1451381. [20] B. Farajollahi, S. G. Etemad, and M. Hojjat, “Heat transfer of nanofluids in a shell and tube heat exchanger,” Int. J. Heat Mass Transf., vol. 53, no. 1–3, pp. 12–17, 2010, doi: 10.1016/j.ijheatmasstransfer.2009.10.019. [21] M. R. Safaei, H. Togun, K. Vafai, S. N. Kazi, and A. Badarudin, “Investigation of heat transfer enhancement in a forward-facing contracting channel using FMWCNT nanofluids,” Numer. Heat Transf. Part A Appl., vol. 66, no. 12, pp. 1321–1340, 2014, doi: 10.1080/10407782.2014.916101. [22] A. V. Minakov, D. V. Guzei, M. I. Pryazhnikov, V. A. Zhigarev, and V. Y. Rudyak, “Study of turbulent heat transfer of the nanofluids in a cylindrical channel,” Int. J. Heat Mass Transf., vol. 102, pp. 745–755, 2016, doi: 10.1016/j.ijheatmasstransfer.2016.06.071. [23] S. Kim et al., “Experimental investigation of HTC with Al2O3 nanofluid in small diameter tubes,” Appl. Therm. Eng., vol. 146, pp. 346–355, 2019, doi: 10.1016/j.applthermaleng.2018.10.001. Page | 50 [24] F. Rashidi and N. M. Nezamabad, “Experimental investigation of convective HTC of CNTs nanofluid under constant heat flux,” Proc. World Congr. Eng. 2011, WCE 2011, vol. 3, pp. 2441–2446, 2011. [25] K. B. Anoop, T. Sundararajan, and S. K. Das, “Effect of particle size on the convective heat transfer in nanofluid in the developing region,” Int. J. Heat Mass Transf., vol. 52, no. 9–10, pp. 2189–2195, 2009, doi: 10.1016/j.ijheatmasstransfer.2007.11.063. [26] E. Ebrahimnia-Bajestan, H. Niazmand, W. Duangthongsuk, and S. Wongwises, “Numerical investigation of effective parameters in convective heat transfer of nanofluids flowing under a laminar flow regime,” Int. J. Heat Mass Transf., vol. 54, no. 19–20, pp. 4376–4388, 2011, doi: 10.1016/j.ijheatmasstransfer.2011.05.006. [27] Y. Gao, H. Wang, A. P. Sasmito, and A. S. Mujumdar, “Measurement and modeling of thermal conductivity of graphene nanoplatelet water and ethylene glycol base nanofluids,” Int. J. Heat Mass Transf., vol. 123, pp. 97–109, 2018, doi: 10.1016/j.ijheatmasstransfer.2018.02.089. [28] M. Corcione, “Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids,” Energy Convers. Manag., vol. 52, no. 1, pp. 789–793, 2011, doi: 10.1016/j.enconman.2010.06.072. [29] S. E. B. Maïga, C. T. Nguyen, N. Galanis, and G. Roy, “Heat transfer behaviours of nanofluids in a uniformly heated tube,” Superlattices Microstruct., vol. 35, no. 3–6, pp. 543–557, 2004, doi: 10.1016/j.spmi.2003.09.012. [30] V. Bianco, O. Manca, and S. Nardini, “Second law analysis of A L 2 O 3 - water nanofluid turbulent forced convection in a circular cross section tube with constant wall Temperature,” Adv. Mech. Eng., vol. 2013, 2013, doi: 10.1155/2013/920278. [31] M. Edalatpour and J. P. Solano, “Thermal-hydraulic characteristics and exergy performance in tube-on-sheet flat plate solar collectors: Effects of nanofluids and mixed convection,” Int. J. Therm. Sci., vol. 118, pp. 397–409, 2017, doi: 10.1016/j.ijthermalsci.2017.05.004. [32] H. Masuda, A. Ebata, K. Teramae, and N. Hishinuma, “Alteration of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles. Dispersion of Al2O3, SiO2 and TiO2 Ultra-Fine Particles.,” Netsu Bussei, vol. 7, no. 4, pp. 227–233, 1993, doi: 10.2963/jjtp.7.227. [33] H. E. Patel, T. Sundararajan, and S. K. Das, “An experimental investigation into the thermal conductivity enhancement in oxide and metallic nanofluids,” J. Nanoparticle Res., vol. 12, no. 3, pp. 1015–1031, 2010, doi: 10.1007/s11051- 009-9658-2. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1830
dc.description Supervised by Dr. Arafat Ahmed Bhuiyan, Associate Professor, Department of Mechanical and Production Engineering (MPE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Mechanical and Production Engineering, 2022. en_US
dc.description.abstract For the next generation of nanofluids, carbon nanomaterials are of tremendous interest. CnT and GnP, in particular, are extremely thermally conductive, and their usage in heat transfer nanofluids is a significant field of study. Using a concentric tube annular heat exchanger in the same operating circumstances, the heat transfer performance of GnP-nanofluid and MWCNT-nanofluid was investigated in this study. In the inner tube, the manufactured nanofluid flowed as a hot fluid in the reverse direction of a colder water flow in the annulus tube. The flow rate (1.5 L/min – 2.5 L/min) and concentration (0.01% – 0.35%) of nanofluid were varied in the experiment. At the same flow rates and nanofluid concentrations, the heat transfer coefficient of GnP-nanofluid was found to be greater than that of MWCNT-nanofluid. When an appropriate volumetric concentration is attained in both nanofluids, the favorable influence on heat transfer performance increase is at its peak. In comparison to MWCNT, our research reveals that GnP can increase heat transfer coefficient at lower volumetric concentrations and flow rates en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering, Islamic University of Technology, Gazipur, Bangladesh en_US
dc.subject Gnp, mwcnt, nanofluid, concentric tube heat exchanger en_US
dc.title A CFD Study on Comparison of Heat Transfer Performance of Water based Graphene Nanoplatelets Nanofluids and Multiwalled Carbon Nanotubes Nanofluids in a Concentric Tube Heat Exchanger en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics