dc.identifier.citation |
[1] H. Cheng, J. Shan, W. Ju, Y. Guo, and L. Zhang, "Automated breast cancer detection and classification using ultrasound images: A survey," Pattern Recognition, vol. 43, pp. 299-317, 2010. [2] R. L. Siegel, K. D. Miller, and A. Jemal, "Cancer statistics, 2016," CA: a cancer journal for clinicians, vol. 66, pp. 7-30, 2016. [3] M. P. Coleman, M. Quaresma, F. Berrino, J.-M. Lutz, R. De Angelis, R. Capocaccia, et al., "Cancer survival in five continents: a worldwide population-based study (CONCORD)," The lancet oncology, vol. 9, pp. 730-756, 2008. [4] A. C. Society, "Cancer Facts & Figures 2016," American Cancer Society; 2016, Atlanta2016. [5] K. M. Kelly, J. Dean, W. S. Comulada, and S.-J. Lee, "Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts," European radiology, vol. 20, pp. 734-742, 2010. [6] S. Shapiro, W. Venet, P. Strax, L. Venet, and R. Roeser, "Ten-to fourteen-year effect of screening on breast cancer mortality," Journal of the National Cancer Institute, vol. 69, pp. 349-355, 1982. [7] A. Jalalian, S. B. Mashohor, H. R. Mahmud, M. I. B. Saripan, A. R. B. Ramli, and B. Karasfi, "Computer-aided detection/diagnosis of breast cancer in mammography and ultrasound: a review," Clinical imaging, vol. 37, pp. 420-426, 2013. [8] R.-F. Chang, W.-J. Wu, W. K. Moon, and D.-R. Chen, "Improvement in breast tumor discrimination by support vector machines and speckle-emphasis texture analysis," Ultrasound in medicine & biology, vol. 29, pp. 679-686, 2003. [9] J. Shan, H. Cheng, and Y. Wang, "A novel segmentation method for breast ultrasound images based on neutrosophic l-means clustering," Medical physics, vol. 39, pp. 5669-5682, 2012. [10] B. Sahiner, H.-P. Chan, M. A. Roubidoux, L. M. Hadjiiski, M. A. Helvie, C. Paramagul, et al., "Malignant and Benign Breast Masses on 3D US Volumetric Images: Effect of Computer-aided Diagnosis on Radiologist Accuracy 1," Radiology, vol. 242, pp. 716-724, 2007. [11] K. Drukker, M. L. Giger, K. Horsch, M. A. Kupinski, C. J. Vyborny, and E. B. Mendelson, "Computerized lesion detection on breast ultrasound," Medical physics, vol. 29, pp. 1438-1446, 2002. [12] Y.-L. Huang, D.-R. Chen, and Y.-K. Liu, "Breast cancer diagnosis using image retrieval for different ultrasonic systems," in Image Processing, 2004. ICIP'04. 2004 International Conference on, 2004, pp. 2957-2960. [13] W. Gómez-Flores and B. A. Ruiz-Ortega, "New Fully Automated Method for Segmentation of Breast Lesions on Ultrasound Based on Texture Analysis," Ultrasound in medicine & biology, vol. 42, pp. 1637-1650, 2016. [14] A. Madabhushi and D. N. Metaxas, "Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions," IEEE transactions on medical imaging, vol. 22, pp. 155-169, 2003. 69 [15] S. K. Alam, E. J. Feleppa, M. Rondeau, A. Kalisz, and B. S. Garra, "Ultrasonic multi-feature analysis procedure for computer-aided diagnosis of solid breast lesions," Ultrasonic imaging, vol. 33, pp. 17-38, 2011. [16] P. H. Arger, C. M. Sehgal, E. F. Conant, J. Zuckerman, S. E. Rowling, and J. A. Patton, "Interreader variability and predictive value of US descriptions of solid breast masses: pilot study," Academic radiology, vol. 8, pp. 335-342, 2001. [17] B. Liu, H. Cheng, J. Huang, J. Tian, J. Liu, and X. Tang, "Automated segmentation of ultrasonic breast lesions using statistical texture classification and active contour based on probability distance," Ultrasound in medicine & biology, vol. 35, pp. 1309-1324, 2009. [18] T. A. Krouskop, D. R. Dougherty, and F. S. Vinson, “A pulsedDoppler ultrasonic system for making noninvasive measurements of the mechanical properties of soft tissue,” J. Rehabil. Res.Dev., vol. 24, pp. 1–8, 1987. [19] R. M. Lerner and K. J. Parker, “Sono-elasticity in ultrasonic tissue characterization and echographic imaging,” inProc. 7th Eur. Comm. Workshop, J. M. Thijssen, Ed. Nijmegen, The Netherlands, 1987. [20] R. M. Lerner, S. R. Huang, and K. J. Parker, “‘Sonoelasticity’images derived from ultrasound signals in mechanically vibrated tissues,” Ultrason. Med. Biol., vol. 16, pp. 231–239, 1990. [21] Y. Yamakoshi, J. Sato, and T. Sato, “Ultrasonic imaging of internal vibration of soft tissue under forced vibration,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-47, pp. 45–53, 1990. [22] J. Ophir, I. C´ espedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: A method for imaging the elasticity in biological tissues,” Ultrason. Imaging, vol. 13, pp. 111–134, 1991. [23] M. O’Donnell, A. R. Skovoroda, B. M. Shapo, and S. Y. Emelianov, “Internal displacement and strain imaging using ultrasonic speckle tracking,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. UFFC-41, pp. 314–325, 1994. [24] S. K. Alam, D. W. Richards, and K. J. Parker, “Detection of intraocular pressure change in the eye using sonoelastic Doppler ultrasound,” Ultrason. Med. Biol., vol. 20, pp. 751–758, 1994. [25] K. J. Parker, L. Gao, R. M. Lerner, and S. F. Levinson, "Techniques for elastic imaging: A review,"IEEE Engineering in Medicine and Biology Magazine, vol. 15, no. 6, pp. 52–59, 1996. [26] S. K. Alam, J. Ophir, and E. E. Konofagou, "An adaptive strain estimator for elastography," IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, vol. 45, no. 2, pp. 461–472, Mar. 1998 [27] - D.N. Metaxas and Xiaolei Huang, "MetaMorphs: Deformable Shape and Texture Models." [28] Y. Y. Boykov and M.-P. Jolly, "Interactive graph cuts for optimal boundary & region segmentation of objects in ND images," in Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on, 2001, pp. 105-112. [29] V. Vezhnevets and V. Konouchine, "GrowCut: Interactive multi-label ND image segmentation by cellular automata," in proc. of Graphicon, 2005, pp. 150-156. [30] A. Madabhushi and D. N. Metaxas, "Combining low-, high-level and empirical domain knowledge for automated segmentation of ultrasonic breast lesions," IEEE transactions on medical imaging, vol. 22, pp. 155-169, 2003. [31] J. A. Noble, N. Navab, and H. Becher, "Ultrasonic image analysis and image-guided interventions," Interface focus, vol. 1, pp. 673-685, 2011. 70 [32] P. Coupé, P. Hellier, C. Kervrann, and C. Barillot, "Nonlocal means-based speckle filtering for ultrasound images," IEEE transactions on image processing, vol. 18, pp. 2221-2229, 2009. [33] T. Loupas, W. McDicken, and P. Allan, "An adaptive weighted median filter for speckle suppression in medical ultrasonic images," IEEE transactions on Circuits and Systems, vol. 36, pp. 129-135, 1989. [34] C. Kervrann, J. Boulanger, and P. Coupé, "Bayesian non-local means filter, image redundancy and adaptive dictionaries for noise removal," in International Conference on Scale Space and Variational Methods in Computer Vision, 2007, pp. 520-532. [35] M. Kass, A. Witkin, and D. Terzopoulos, "Snakes: Active contour models," International journal of computer vision, vol. 1, pp. 321-331, 1988. [36] D. Leucht and W. Leucht, Teaching atlas of breast ultrasound: Thieme, 1996. [37] Y. Yu and S. T. Acton, "Speckle reducing anisotropic diffusion," IEEE Transactions on image processing, vol. 11, pp. 1260-1270, 2002. [38] Shankar, P., Dumane, V., Reid, J., Genis, V., Forsberg, F., Piccoli, C. and Goldberg, B. (2001). Classification of ultrasonic B-mode images of breast masses using Nakagami distribution. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, 48(2), pp.569-580. [39] P. M. Shankar, “A model for ultrasonic scattering from tissues based on K-distribution,” Phys. Med. Biol., vol. 40, pp. 1633– 1649, 1995. [40] V. M. Narayanan, P. M. Shankar, and J. M. Reid, “Non-Rayleigh statistics of ultrasonic back scattered signals,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 41, no. 6, pp. 845–852, Nov. 1994. [41] T. A. Tuthil, R. H. Sperry, and K. J. Parker, “Deviation from Rayleigh statistics in ultrasonic speckle,” Ultrason. Imag., vol. 10, pp. 81–89, 1988. [42] R. F. Wagner, M. F. Insane, and D. G. Brown, “Statistical properties of radio-frequency and envelope detected signals with applications to medical ultrasound,” J. Opt. Soc. Amer. A, vol. 4, pp. 910–922, 1987. [43] M. Nakagami, “The m distribution—A general formula of intensity distribution in rapid fading,” in Statistical Methods on Radio Wave Propagation. W. C. Hoffman, Ed. New York: Pergamon Press, 1960, pp. 3–36. [44] P. M. Shankar, “A general statistical model for ultrasonic scattering from tissues,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 47, no. 3, pp. 727–736, May 2000. [45] R. F. Wagner, S. W. Smith, J. M. Sandrik, and H. Lopez, “Statistics of speckle in ultrasound B-scans,” IEEE Trans., vol. SU-30, pp. 156–163, 1986. [46] A. Papoulis, Probability, Random Variables, and Stochastic Processes. New York: McGraw-Hill, 1991. [47] Cristea, A., Franceschini, E., Lin, F., Mamou, J., Cachard, C. and Basset, O. (2015). Quantitative Characterization of Concentrated Cell Pellet Biophantoms using Statistical Models for the Ultrasound Echo Envelope. Physics Procedia, 70, pp.1091-1095. [48] Oelze, M. and Mamou, J. (2016). Review of Quantitative Ultrasound: Envelope Statistics and Backscatter Coefficient Imaging and Contributions to Diagnostic Ultrasound. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 63(2), pp.336-351. |
en_US |