dc.identifier.citation |
[1] WHO, “World Report on Disability - Summary,” World Rep. Disabil. 2011, no. WHO/NMH/VIP/11.01, pp. 1–23, 2011. [2] P. Raghavan, “Upper Limb Motor Impairment After Stroke,” Physical Medicine and Rehabilitation Clinics of North America, vol. 26, no. 4. Elsevier, pp. 599–610, Nov. 01, 2015, doi: 10.1016/j.pmr.2015.06.008. [3] E. H. Lo, T. Dalkara, and M. A. Moskowitz, “Neurological diseases: Mechanisms, challenges and opportunities in stroke,” Nat. Rev. Neurosci., vol. 4, no. 5, pp. 399–414, 2003, doi: 10.1038/nrn1106. [4] N. E. Mayo et al., “Disablement following stroke,” Disabil. Rehabil., vol. 21, no. 5–6, pp. 258–268, May 1999, doi: 10.1080/096382899297684. [5] C. D. A. Wolfe, “The impact of stroke,” British Medical Bulletin, vol. 56, no. 2. pp. 275–286, 2000, doi: 10.1258/0007142001903120. [6] S. Y. Chabok, M. Safaee, A. Alizadeh, M. A. Dafchahi, O. Taghinnejadi, and L. Koochakinejad, “Epidemiology of traumatic spinal injury: a descriptive study,” Acta Med. Iran., vol. 48, no. 5, pp. 308–311, 2010. [7] R. Kumar et al., “Traumatic Spinal Injury: Global Epidemiology and Worldwide Volume,” World Neurosurg., vol. 113, pp. e345–e363, 2018, doi: 10.1016/j.wneu.2018.02.033. [8] D. Reddihough, K. C.-A. J. of physiotherapy, and undefined 2003, “The epidemiology and causes of cerebral palsy,” Elsevier. [9] K. K.-A. family physician and U. 2006, “Cerebral palsy: an overview,” aafp.org. [10] H. K. Graham and P. Selber, “Musculoskeletal aspects of cerebral palsy,” Journal of Bone and Joint Surgery - Series B, vol. 85, no. 2. pp. 157–166, Mar. 2003, doi: 10.1302/0301- 620X.85B2.14066. [11] K. B. Nelson and J. K. Grether, “Causes of cerebral palsy,” Curr. Opin. Pediatr., vol. 11, no. 6, pp. 487–491, 1999, doi: 10.1097/00008480-199912000-00002. Bibliography 119 [12] O. Hardiman et al., “Amyotrophic lateral sclerosis,” Nature Reviews Disease Primers, vol. 3. 2017, doi: 10.1038/nrdp.2017.71. [13] N. W. Roller, A. Garfunkel, C. Nichols, and I. I. Ship, “Amyotrophic lateral sclerosis,” Oral Surgery, Oral Med. Oral Pathol., vol. 37, no. 1, pp. 46–52, 1974, doi: 10.1016/0030- 4220(74)90158-3. [14] R. H. Carmona, “The global challenges of birth defects and disabilities,” Lancet, vol. 366, no. 9492. pp. 1142–1144, 2005, doi: 10.1016/S0140-6736(05)67459-4. [15] Center for Parent Information and Resources, “Categories of Disability Under Part B of IDEA,” Nichcy, Mar. 2019. http://nichcy.org (accessed Jan. 14, 2022). [16] A. Sarvestani, A. A.-T. Monthly, and U. 2013, “Amputation: a ten-year survey,” ncbi.nlm.nih.gov. [17] A History of Limb Amputation. Springer London, 2007. [18] T. V. Steinbach, “Upper limb amputation.,” Prog. Surg., vol. 16, pp. 224–248, May 1979, doi: 10.1016/b978-1-4160-4007-1.50110-3. [19] N. W. Moon, P. M. Baker, and K. Goughnour, “Designing wearable technologies for users with disabilities: Accessibility, usability, and connectivity factors,” J. Rehabil. Assist. Technol. Eng., vol. 6, p. 205566831986213, Jan. 2019, doi: 10.1177/2055668319862137. [20] A. Zemed, K. N. Chala, G. A. Eriku, and A. Y. Aschalew, “Health-related quality of life and associated factors among patients with stroke at tertiary level hospitals in Ethiopia,” PLoS One, vol. 16, no. 3 March, Mar. 2021, doi: 10.1371/JOURNAL.PONE.0248481. [21] Y. Kim, H. Lee, K. Park, B. Park, and A. Zhou, “Public Health and Healthcare,” sciaeon.org. [22] O. Remes, J. F. Mendes, and P. Templeton, “Biological, Psychological, and Social Determinants of Depression: A Review of Recent Literature,” Brain Sci. 2021, Vol. 11, Page 1633, vol. 11, no. 12, p. 1633, Dec. 2021, doi: 10.3390/BRAINSCI11121633. [23] R. Zhao and J. Wang, “Visualizing the research on pervasive and ubiquitous computing,” Scientometrics, vol. 86, no. 3, pp. 593–612, Sep. 2010, doi: 10.1007/S11192-010-0283-8. [24] K. R. Lee, W. Du Chang, S. Kim, and C. H. Im, “Real-time eye-writing recognition using electrooculogram,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 25, no. 1, pp. 37–48, Jan. 2017, doi: 10.1109/TNSRE.2016.2542524. Bibliography 120 [25] M. Caligari, M. Godi, S. Guglielmetti, F. Franchignoni, and A. Nardone, “Eye tracking communication devices in amyotrophic lateral sclerosis: Impact on disability and quality of life,” Amyotroph. Lateral Scler. Front. Degener., vol. 14, no. 7–8, pp. 546–552, Dec. 2013, doi: 10.3109/21678421.2013.803576. [26] L. Y. Deng, C. L. Hsu, T. C. Lin, J. Sen Tuan, and Y. H. Chen, “Eog-based signal detection and verification for HCI,” in Proceedings of the 2009 International Conference on Machine Learning and Cybernetics, 2009, vol. 6, pp. 3342–3348, doi: 10.1109/ICMLC.2009.5212752. [27] W. Du Chang, H. S. Cha, D. Y. Kim, S. H. Kim, and C. H. Im, “Development of an electrooculogram-based eye-computer interface for communication of individuals with amyotrophic lateral sclerosis,” J. Neuroeng. Rehabil., vol. 14, no. 1, pp. 1–13, Sep. 2017, doi: 10.1186/s12984-017-0303-5. [28] H. Rindermann, A. L. Ackermann, and J. te Nijenhuis, “Does Blindness Boost Working Memory? A Natural Experiment and Cross-Cultural Study,” Front. Psychol., vol. 11, p. 1571, Jul. 2020, doi: 10.3389/FPSYG.2020.01571/BIBTEX. [29] N. Raz, E. Striem, G. Pundak, T. Orlov, and E. Zohary, “Superior Serial Memory in the Blind: A Case of Cognitive Compensatory Adjustment,” Curr. Biol., vol. 17, no. 13, pp. 1129–1133, Jul. 2007, doi: 10.1016/J.CUB.2007.05.060. [30] C. Battal, V. Occelli, G. Bertonati, F. Falagiarda, and O. Collignon, “General Enhancement of Spatial Hearing in Congenitally Blind People,” Psychol. Sci., vol. 31, no. 9, pp. 1129–1139, Sep. 2020, doi: 10.1177/0956797620935584. [31] M. E. Nilsson and B. N. Schenkman, “Blind people are more sensitive than sighted people to binaural sound-location cues, particularly inter-aural level differences,” Hear. Res., vol. 332, pp. 223–232, Feb. 2016, doi: 10.1016/J.HEARES.2015.09.012. [32] B. N. Schenkman and M. E. Nilsson, “Human echolocation: Blind and sighted persons’ ability to detect sounds recorded in the presence of a reflecting object,” Perception, vol. 39, no. 4, pp. 483–501, Jan. 2010, doi: 10.1068/p6473. [33] T. A. Jones, “Motor compensation and its effects on neural reorganization after stroke,” Nature Reviews Neuroscience, vol. 18, no. 5. Nature Publishing Group, pp. 267–280, Mar. 23, 2017, doi: 10.1038/nrn.2017.26. Bibliography 121 [34] H. Mano, S. Fujiwara, and N. Haga, “Adaptive behaviour and motor skills in children with upper limb deficiency,” Prosthet. Orthot. Int., vol. 42, no. 2, pp. 236–240, Apr. 2018, doi: 10.1177/0309364617718411. [35] W. W. Wong, Y. Fang, W. C. W. Chu, L. Shi, and K. Y. Tong, “What kind of brain structural connectivity remodeling can relate to residual motor function after stroke?,” Front. Neurol., vol. 10, no. OCT, p. 1111, 2019, doi: 10.3389/fneur.2019.01111. [36] C. Pierella et al., “Remapping residual coordination for controlling assistive devices and recovering motor functions,” Neuropsychologia, vol. 79, pp. 364–376, Dec. 2015, doi: 10.1016/J.NEUROPSYCHOLOGIA.2015.08.024. [37] N. Harris, “The Design and Development of Assistive Technology,” IEEE Potentials, vol. 36, no. 1, pp. 24–28, Jan. 2017, doi: 10.1109/MPOT.2016.2615107. [38] V. G. Motti and K. Caine, “Human factors considerations in the design of wearable devices,” in Proceedings of the Human Factors and Ergonomics Society, 2014, vol. 2014-Janua, pp. 1820–1824, doi: 10.1177/1541931214581381. [39] X. Zhang, X. Liu, S. M. Yuan, and S. F. Lin, “Eye Tracking Based Control System for Natural Human-Computer Interaction,” Comput. Intell. Neurosci., vol. 2017, 2017, doi: 10.1155/2017/5739301. [40] F. H. Borsato and C. H. Morimoto, “Episcleral surface tracking: Challenges and possibilities for using mice sensors for wearable eye tracking,” in Eye Tracking Research and Applications Symposium (ETRA), Mar. 2016, vol. 14, pp. 39–46, doi: 10.1145/2857491.2857496. [41] M. Tresanchez, T. Pallej`a, and J. Palac´ın, “Optical mouse sensor for eye blink detection and pupil tracking: Application in a low-cost eye-controlled pointing device,” J. Sensors, vol. 2019, 2019, doi: 10.1155/2019/3931713. [42] S. S. Khan, M. S. H. Sunny, M. S. Hossain, E. Hossain, and M. Ahmad, “Nose tracking cursor control for the people with disabilities: An improved HCI,” in 3rd International Conference on Electrical Information and Communication Technology, EICT 2017, 2018, vol. 2018-Janua, pp. 1–5, doi: 10.1109/EICT.2017.8275178. [43] C. Igual, J. Igual, J. M. Hahne, and L. C. Parra, “Adaptive auto-regressive proportional myoelectric control,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 2, pp. 314–322, 2019, doi: 10.1109/TNSRE.2019.2894464. Bibliography 122 [44] S. M. Ormeara, M. C. Shyr, K. R. Lyons, and S. S. Joshi, “Comparing Two Different Cursor Control Methods which Use Single-Site Surface Electromyography,” in International IEEE/EMBS Conference on Neural Engineering, NER, 2019, vol. 2019-March, pp. 1163–1166, doi: 10.1109/NER.2019.8716903. [45] M. R. Raihan, A. Bin Shams, and M. Ahmad, “Wearable multifunctional computer mouse based on EMG and gyro for amputees,” in 2020 2nd International Conference on Advanced Information and Communication Technology, ICAICT 2020, 2020, pp. 129–134, doi: 10.1109/ICAICT51780.2020.9333476. [46] E. A. Chung and M. E. Benalc´azar, “Real-time hand gesture recognition model using deep learning techniques and EMG signals,” in European Signal Processing Conference, 2019, vol. 2019-Septe, doi: 10.23919/EUSIPCO.2019.8903136. [47] G. Teng, Y. He, H. Zhao, D. Liu, J. Xiao, and S. Ramkumar, “DESIGN AND DEVELOPMENT OF HUMAN COMPUTER INTERFACE USING ELECTROOCULOGRAM WITH DEEP LEARNING,” Artif. Intell. Med., vol. 102, p. 101765, Jan. 2020, doi: 10.1016/j.artmed.2019.101765. [48] D. J. Creel, “The electrooculogram,” in Handbook of Clinical Neurology, vol. 160, Elsevier, 2019, pp. 495–499. [49] R. C. Fouch´e, “Head mouse: Generalisability of research focused on the disabled to able bodied users,” in ACM International Conference Proceeding Series, Sep. 2017, vol. Part F1308, no. 17, doi: 10.1145/3129416.3129442. [50] A. H. Gorji, S. M. Safavi, C. T. Lee, and P. H. Chou, “Head-mouse: A simple cursor controller based on optical measurement of head tilt,” in 2017 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2017 - Proceedings, 2017, vol. 2018-Janua, pp. 1–5, doi: 10.1109/SPMB.2017.8257058. [51] M. A. Velasco, A. Clemotte, R. Raya, R. Ceres, and E. Rocon, “A novel head cursor facilitation technique for cerebral palsy: Functional and clinical implications,” Interact. Comput., vol. 29, no. 5, pp. 755–766, 2017, doi: 10.1093/iwc/iwx009. [52] K. Bodine and F. Gemperle, “Effects of functionality on perceived comfort of wearables,” in Proceedings - International Symposium on Wearable Computers, ISWC, 2003, pp. 57–61, doi: 10.1109/iswc.2003.1241394. Bibliography 123 [53] F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User Acceptance of Computer Technology: A Comparison of Two Theoretical Models,” Manage. Sci., vol. 35, no. 8, pp. 982–1003, Aug. 1989, doi: 10.1287/MNSC.35.8.982. [54] F. D. Davis, “Perceived usefulness, perceived ease of use, and user acceptance of information technology,” MIS Q. Manag. Inf. Syst., vol. 13, no. 3, pp. 319–339, 1989, doi: 10.2307/249008. [55] R. Onofrio, M. Gandolla, E. Lettieri, and A. G. Pedrocchi, “Acceptance Model of an Innovative Assistive Technology by Neurological Patients with a Motor Disability of Their Upper Limb,” Adv. Intell. Syst. Comput., vol. 1217 AISC, pp. 907–913, Jul. 2020, doi: 10.1007/978-3-030-51828-8 120. [56] S. Dirks and C. B¨uhler, “Assistive Technologies for People with Cognitive Impairments – Which Factors Influence Technology Acceptance?,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 10907 LNCS, pp. 503–516, Jul. 2018, doi: 10.1007/978-3-319-92049-8 36. [57] P. Theodorou and A. Meliones, “Developing apps for people with sensory disabilities, and implications for technology acceptance models,” Glob. J. Inf. Technol. Emerg. Technol., vol. 9, no. 2, pp. 33–40, Oct. 2019, doi: 10.18844/GJIT.V9I2.4431. [58] R. Bates and H. O. Istance, “Why are eye mice unpopular? A detailed comparison of head and eye controlled assistive technology pointing devices,” Univers. Access Inf. Soc., vol. 2, no. 3, pp. 280–290, Oct. 2003, doi: 10.1007/s10209-003-0053-y. [59] ShinoharaKristen, “A new approach for the design of assistive technologies,” ACM SIGACCESS Access. Comput., no. 102, pp. 45–48, Jan. 2012, doi: 10.1145/2140446.2140456. [60] J. B.-U. evaluation in industry and U. 1996, Sus: a “quick and dirty’usability. London, UK.: Taylor and Francis, 1996. [61] J. R. Lewis, “The System Usability Scale: Past, Present, and Future,” Int. J. Hum. Comput. Interact., vol. 34, no. 7, pp. 577–590, Jul. 2018, doi: 10.1080/10447318.2018.1455307. [62] J. R. Lewis and J. Sauro, “The factor structure of the system usability scale,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5619 LNCS, pp. 94–103, doi: 10.1007/978-3- 642-02806-9 12. Bibliography 124 [63] M. R. Drew, B. Falcone, and W. L. Baccus, “What does the system usability scale (SUS) measure?: Validation using think aloud verbalization and behavioral metrics,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), Jul. 2018, vol. 10918 LNCS, pp. 356–366, doi: 10.1007/978-3-319-91797-9 25. [64] A. Kaya, R. Ozturk, and C. Altin Gumussoy, “Usability Measurement of Mobile Applications with System Usability Scale (SUS),” Springer, Cham, 2019, pp. 389–400. [65] J. Ehlers, C. Strauch, and A. Huckauf, “A view to a click: Pupil size changes as input command in eyes-only human-computer interaction,” Int. J. Hum. Comput. Stud., vol. 119, pp. 28–34, 2018, doi: 10.1016/j.ijhcs.2018.06.003. [66] L. Demers, R. Weiss-Lambrou, and B. Ska, “The Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0): An overview and recent progress,” Technol. Disabil., vol. 14, no. 3, pp. 101–105, 2002, doi: 10.3233/tad-2002-14304. [67] L. Demers, “An international content validation of the Quebec User Evaluation of Satisfaction with assistive Technology (QUEST),” Occup. Ther. Int., vol. 6, no. 3, pp. 159–175, 1999, doi: 10.1002/oti.95. [68] L. Demers, R. Weiss-Lambrou, B. Ska, and L. Demers, “Item Analysis of the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST),” Assist. Technol., vol. 12, no. 2, pp. 96–105, Dec. 2000, doi: 10.1080/10400435.2000.10132015. [69] V. Venkatesh and F. D. Davis, “Theoretical extension of the Technology Acceptance Model: Four longitudinal field studies,” Manage. Sci., vol. 46, no. 2, pp. 186–204, 2000, doi: 10.1287/mnsc.46.2.186.11926. [70] W. Y. Lin, W. C. Chou, T. H. Tsai, C. C. Lin, and M. Y. Lee, “Development of a wearable instrumented vest for posture monitoring and system usability verification based on the technology acceptance model,” Sensors (Switzerland), vol. 16, no. 12, 2016, doi: 10.3390/s16122172. [71] L. Shore, V. Power, A. de Eyto, and L. W. O’Sullivan, “Technology Acceptance and UserCentred Design of Assistive Exoskeletons for Older Adults: A Commentary,” Robot. 2018, Vol. 7, Page 3, vol. 7, no. 1, p. 3, Jan. 2018, doi: 10.3390/ROBOTICS7010003. Bibliography 125 [72] A. Ahmad, T. Rasul, A. Yousaf, and U. Zaman, “Understanding factors influencing elderly diabetic patients’ continuance intention to use digital health wearables: Extending the technology acceptance model (TAM),” J. Open Innov. Technol. Mark. Complex., vol. 6, no. 3, p. 81, Sep. 2020, doi: 10.3390/JOITMC6030081. [73] T. H. Tsai, W. Y. Lin, Y. S. Chang, P. C. Chang, and M. Y. Lee, “Technology anxiety and resistance to change behavioral study of a wearable cardiac warming system using an extended TAM for older adults,” PLoS One, vol. 15, no. 1, p. e0227270, Jan. 2020, doi: 10.1371/journal.pone.0227270. [74] A. Lunney, N. R. Cunningham, and M. S. Eastin, “Wearable fitness technology: A structural investigation into acceptance and perceived fitness outcomes,” Comput. Human Behav., vol. 65, pp. 114–120, 2016, doi: 10.1016/j.chb.2016.08.007. [75] J. Varona, C. Manresa-Yee, and F. J. Perales, “Hands-free vision-based interface for computer accessibility,” J. Netw. Comput. Appl., vol. 31, no. 4, pp. 357–374, 2008, doi: 10.1016/j.jnca.2008.03.003. [76] D. O. Gorodnichy and G. Roth, “Nouse ‘use your nose as a mouse’ perceptual vision technology for hands-free games and interfaces,” in Image and Vision Computing, 2004, vol. 22, no. 12 SPEC. ISS., pp. 931–942, doi: 10.1016/j.imavis.2004.03.021. [77] A. Kabra, C. Agrawal, H. Pallab Jyoti Dutta, M. K. Bhuyan, and R. H. Laskar, “Vision Based Communicator,” in Proceedings of 2020 IEEE Applied Signal Processing Conference, ASPCON 2020, 2020, pp. 293–297, doi: 10.1109/ASPCON49795.2020.9276664. [78] R. J. K. Jacob, “What you look at is what you get: Eye movement-based interaction techniques,” in Conference on Human Factors in Computing Systems - Proceedings, Mar. 1990, pp. 11–18, doi: 10.1145/97243.97246. [79] R. Zuniga and J. Magee, “Camera mouse: Dwell vs. computer vision-based intentional click activation,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2017, vol. 10278 LNCS, pp. 455–464, doi: 10.1007/978-3-319-58703-5 34. [80] M. Atyabi, M. S. K. Hosseini, and M. Mokhtari, “The webcam mouse: Visual 3D tracking of body features to provide computer access for people with severe disabilities,” 2006, doi: 10.1109/INDCON.2006.302809. Bibliography 126 [81] J. J. Magee, S. Epstein, E. S. Missimer, C. Kwan, and M. Betke, “Adaptive mousereplacement interface control functions for users with disabilities,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2011, vol. 6766 LNCS, no. PART 2, pp. 332–341, doi: 10.1007/978-3-642-21663-3 36. [82] J. Magee, T. Felzer, and I. Scott Mackenzie, “Camera Mouse + Clicker AID: Dwell vs. Singlemuscle click actuation in mouse-replacement interfaces,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2015, vol. 9175, pp. 74–84, doi: 10.1007/978-3-319-20678-3 8. [83] V. Rajanna and T. Hammond, “GAWSCHI: Gaze-augmented, wearable-supplemented computer-human interaction,” in Eye Tracking Research and Applications Symposium (ETRA), Mar. 2016, vol. 14, pp. 233–236, doi: 10.1145/2857491.2857499. [84] V. Rajanna, “Gaze typing through foot-operated wearable device,” in ASSETS 2016 - Proceedings of the 18th International ACM SIGACCESS Conference on Computers and Accessibility, Oct. 2016, pp. 345–346, doi: 10.1145/2982142.2982145. [85] R. Merletti and P. Parker, Electromyography: physiology, engineering, and non-invasive applications. 2004. [86] A. Muzumdar, Powered Upper Limb Prostheses: Control, Implementation and Clinical Application. 2004. [87] C. De Luca, “Electromyography,” Encycl. Med. Devices Instrum., Apr. 2006, doi: 10.1002/0471732877.EMD097. [88] M. Suresh, P. G. Krishnamohan, and M. S. Holi, “GMM modeling of person information from EMG signals,” in 2011 IEEE Recent Advances in Intelligent Computational Systems, RAICS 2011, 2011, pp. 712–717, doi: 10.1109/RAICS.2011.6069403. [89] M. Yildiz and H. O. ¨ Ulk¨uta¸s, “A New PC-Based Text Entry System Based on EOG Coding,” ¨ Adv. Human-Computer Interact., vol. 2018, 2018, doi: 10.1155/2018/8528176. [90] J. Heo, H. Yoon, and K. S. Park, “A novel wearable forehead EOG measurement system for human computer interfaces,” Sensors (Switzerland), vol. 17, no. 7, p. 1485, Jun. 2017, doi: 10.3390/s17071485. Bibliography 127 [91] B. Obard, A. Larson, J. Herrera, D. Nega, and K. George, “Electrooculography Based iOS Controller for Individuals with Quadriplegia or Neurodegenerative Disease,” in Proceedings - 2017 IEEE International Conference on Healthcare Informatics, ICHI 2017, Sep. 2017, pp. 101–106, doi: 10.1109/ICHI.2017.90. [92] X. J. Ding and Z. Lv, “Design and development of an EOG-based simplified Chinese eyewriting system,” Biomed. Signal Process. Control, vol. 57, p. 101767, Mar. 2020, doi: 10.1016/J.BSPC.2019.101767. [93] A. L´opez, M. Fern´andez, H. Rodr´ıguez, F. Ferrero, and O. Postolache, “Development of an EOG-based system to control a serious game,” Meas. J. Int. Meas. Confed., vol. 127, pp. 481–488, Oct. 2018, doi: 10.1016/j.measurement.2018.06.017. [94] C. T. Lin et al., “EOG-Based Eye Movement Classification and Application on HCI Baseball Game,” IEEE Access, vol. 7, pp. 96166–96176, 2019, doi: 10.1109/ACCESS.2019.2927755. [95] A. L´opez, P. J. Ar´evalo, F. J. Ferrero, M. Valledor, and J. C. Campo, “EOG-based system for mouse control,” in Proceedings of IEEE Sensors, Dec. 2014, vol. 2014-Decem, no. December, pp. 1264–1267, doi: 10.1109/ICSENS.2014.6985240. [96] A. Larson, J. Herrera, K. George, and A. Matthews, “Electrooculography based electronic communication device for individuals with ALS,” Apr. 2017, doi: 10.1109/SAS.2017.7894062. [97] J. Xiao, J. Qu, and Y. Li, “An Electrooculogram-Based Interaction Method and Its Musicon-Demand Application in a Virtual Reality Environment,” IEEE Access, vol. 7, pp. 22059–22070, 2019, doi: 10.1109/ACCESS.2019.2898324. [98] D. R. Lingegowda, K. Amrutesh, and S. Ramanujam, “Electrooculography based assistive technology for ALS patients,” in 2017 IEEE International Conference on Consumer Electronics-Asia, ICCE-Asia 2017, Mar. 2018, vol. 2018-Janua, pp. 36–40, doi: 10.1109/ICCE-ASIA.2017.8307837. [99] T. Triadi, I. Wijayanto, and S. Hadiyoso, “Electrooculogram (EOG) based Mouse Cursor Controller Using the Continuous Wavelet Transform and Statistic Features,” Lontar Komput. J. Ilm. Teknol. Inf., vol. 12, no. 1, p. 53, 2021, doi: 10.24843/lkjiti.2021.v12.i01.p06. [100] N. Marjanovic, K. Kerr, R. Aranda, R. Hickey, and H. Esmailbeigi, “Wearable wireless User Interface Cursor-Controller (UIC-C),” in Proceedings of the Annual International Bibliography 128 Conference of the IEEE Engineering in Medicine and Biology Society, EMBS, 2017, pp. 3852–3855, doi: 10.1109/EMBC.2017.8037697. [101] D. J. McFarland, D. J. Krusienski, W. A. Sarnacki, and J. R. Wolpaw, “Emulation of computer mouse control with a noninvasive brain-computer interface,” J. Neural Eng., vol. 5, no. 2, pp. 101–110, 2008, doi: 10.1088/1741-2560/5/2/001. [102] K. Sancheti, K. S. Krishnan, A. Suhaas, and P. Suresh, “Hands-free Cursor Control using Intuitive Head Movements and Cheek Muscle Twitches,” in IEEE Region 10 Annual International Conference, Proceedings/TENCON, 2019, vol. 2018-Octob, pp. 356–361, doi: 10.1109/TENCON.2018.8650532. [103] A. Yamamoto et al., “Application of a wearable switch to perform a mouse left click for a child with mix type of cerebral palsy: a single case study,” Disabil. Rehabil. Assist. Technol., vol. 15, no. 1, pp. 54–59, Jan. 2020, doi: 10.1080/17483107.2018.1520309. [104] S. Rush and EOWG, “Accessibility, Usability, and Inclusion — Web Accessibility Initiative (WAI) — W3C,” W3C Wai, 2016. https://www.w3.org/WAI/fundamentals/accessibilityusability-inclusion/ (accessed Mar. 19, 2022). [105] Dohrmann Consulting, “What is Ergonomics? — Dohrmann Consulting.” 2014. [106] K. Stephens, “Normal Neck Range of Motion — Livestrong.com.” https://www.livestrong.com/article/95456-normal-neck-range-motion/ (accessed Mar. 24, 2022). [107] V. F. Ferrario, C. Sforza, G. Serrao, G. P. Grassi, and E. Mossi, “Active range of motion of the head and cervical spine: A three-dimensional investigation in healthy young adults,” J. Orthop. Res., vol. 20, no. 1, pp. 122–129, 2002, doi: 10.1016/S0736-0266(01)00079-1. [108] S. O. H. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays,” Rep. x-io Univ. . . . , p. 32, 2010. [109] S. O. H. Madgwick, A. J. L. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” 2011, doi: 10.1109/ICORR.2011.5975346. [110] F. Law and I. S. Mackenzie, “Input / Output.” Bibliography 129 [111] S. Zhai, J. Kong, and X. Ren, “Speed-accuracy tradeoff in Fitts’ law tasks - On the equivalency of actual and nominal pointing precision,” Int. J. Hum. Comput. Stud., vol. 61, no. 6, pp. 823–856, 2004, doi: 10.1016/j.ijhcs.2004.09.007. [112] P. M. Fitts and J. R. Peterson, “Information capacity of discrete motor responses,” J. Exp. Psychol., vol. 67, no. 2, pp. 103–112, 1964, doi: 10.1037/h0045689. [113] A. Welford, “Fundamentals of skill.,” 1968. [114] S. Zhai, “Characterizing computer input with fitts’ law parameters - The information and non-information aspects of pointing,” Int. J. Hum. Comput. Stud., vol. 61, no. 6, pp. 791–809, 2004, doi: 10.1016/j.ijhcs.2004.09.006. [115] R. Kopper, D. A. Bowman, M. G. Silva, and R. P. McMahan, “A human motor behavior model for distal pointing tasks,” Int. J. Hum. Comput. Stud., vol. 68, no. 10, pp. 603–615, 2010, doi: 10.1016/j.ijhcs.2010.05.001. [116] H. Okada and T. Akiba, “Evaluation of Fitts ’ Law Index of Dif fi culty Formulation for Screen Size Variations,” zenodo.net, no. 1, pp. 198–203, 2014. [117] J. O. Wobbrock, E. Cutrell, S. Harada, and I. S. MacKenzie, “An error model for pointing based on Fitts’ law,” in Conference on Human Factors in Computing Systems - Proceedings, 2008, pp. 1613–1622, doi: 10.1145/1357054.1357306. [118] X. Zhou, X. Cao, and X. Ren, “Speed-accuracy tradeoff in trajectory-based tasks with temporal constraint,” in Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2009, vol. 5726 LNCS, no. PART 1, pp. 906–919, doi: 10.1007/978-3-642-03655-2 99. [119] H. N. Zelaznik, S. Mone, G. P. McCabe, and C. Thaman, “Role of Temporal and Spatial Precision in Determining the Nature of the Speed-Accuracy Trade-Off in Aimed-Hand Movements,” J. Exp. Psychol. Hum. Percept. Perform., vol. 14, no. 2, pp. 221–230, 1988, doi: 10.1037/0096-1523.14.2.221. [120] X. Ren, J. Kong, and X.-Q. Jiang, “SH-Model: A Model Based on Both System and Human Effects for Pointing Task Evaluation,” IPSJ Digit. Cour., vol. 1, pp. 193–203, 2005, doi: 10.2197/ipsjdc.1.193. Bibliography 130 [121] D. Gergle, D. T.-W. of K. in HCI, and U. 2014, “Experimental research in HCI,” Ways Knowing HCI, pp. 191–227, Jan. 2014, doi: 10.1007/978-1-4939-0378-8 9. [122] K. Goldberg, S. Faridani, and R. Alterovitz, “A New Derivation and Dataset for Fitts’ Law of Human Motion,” eecs.berkeley.edu, vol. 6, no. UCB/EECS-2013-171, pp. 1–14, 2013. [123] K. Goldberg, S. Faridani, and R. Alterovitz, “Two large open-access datasets for fitts’ law of human motion and a succinct derivation of the square-root variant,” IEEE Trans. Human-Machine Syst., vol. 45, no. 1, pp. 62–73, 2015, doi: 10.1109/THMS.2014.2360281. [124] J. Gori and O. Rioul, “Regression to a linear lower bound with outliers: An exponentially modified Gaussian noise model,” in European Signal Processing Conference, 2019, vol. 2019-Septe, doi: 10.23919/EUSIPCO.2019.8902946. [125] J. Gori, O. Rioul, and Y. Guiard, “Speed-accuracy tradeoff: A formal information-theoretic transmission scheme (FITTS),” ACM Trans. Comput. Interact., vol. 25, no. 5, Sep. 2018, doi: 10.1145/3231595. [126] O. Chapuis, R. Blanch, and M. Beaudouin-Lafon, “Fitts’ law in the wild: A field study of aimed movements,” LRI Tech. Repport, vol. 1480, no. 1480, pp. 1–11, 2007. [127] D. R. Anderson, K. P. Burnham, and G. C. White, “Comparison of Akaike information criterion and consistent Akaike information criterion for model selection and statistical inference from capture-recapture studies,” Journal of Applied Statistics, vol. 25, no. 2. Carfax Publishing Company, pp. 263–282, 1998, doi: 10.1080/02664769823250. [128] A. H. Gorji, S. M. Safavi, C. T. Lee, and P. H. Chou, “Head-mouse: A simple cursor controller based on optical measurement of head tilt,” in 2017 IEEE Signal Processing in Medicine and Biology Symposium, SPMB 2017 - Proceedings, 2017, vol. 2018-Janua, pp. 1–5, doi: 10.1109/SPMB.2017.8257058. [129] W. Vogt, “Tukey’s Honestly Significant Difference (HSD) Test,” in Dictionary of Statistics & Methodology, 2015. [130] B. Han and K. Kim, “Typing performance evaluation with multimodal soft keyboard completely integrated in commercial mobile devices,” J. Multimodal User Interfaces, vol. 9, no. 3, pp. 173–181, Sep. 2015, doi: 10.1007/s12193-015-0177-4. Bibliography 131 [131] Z. Ma, D. Edge, L. Findlater, and H. Z. Tan, “Haptic keyclick feedback improves typing speed and reduces typing errors on a flat keyboard,” in IEEE World Haptics Conference, WHC 2015, Aug. 2015, pp. 220–227, doi: 10.1109/WHC.2015.7177717. [132] J. R. Kim and H. Z. Tan, “A study of touch typing performance with keyclick feedback,” in IEEE Haptics Symposium, HAPTICS, 2014, pp. 227–233, doi: 10.1109/HAPTICS.2014.6775459. [133] J. R. Lewis and J. Sauro, “Item Benchmarks for the System Usability Scale,” J. Usability Stud., vol. 13, no. 3, pp. 158–167, 2018, Accessed: Mar. 23, 2022. [134] A. Bangor, P. Kortum, and J. Miller, “Determining what individual SUS scores mean: Adding an adjective rating scale,” J. usability Stud., vol. 4, no. 3, pp. 114–123, 2009, Accessed: Mar. 23, 2022. [135] M. Felea, M. Bucur, C. Negrut, iu, M. Nit,u, and D. A. Stoica, “Wearable technology adoption among romanian students: A structural model based on Tam,” Amfiteatru Econ., vol. 23, no. 57, pp. 376–391, 2021, doi: 10.24818/EA/2021/57/376. [136] S. Y. Lee and K. Lee, “Factors that influence an individual’s intention to adopt a wearable healthcare device: The case of a wearable fitness tracker,” Technol. Forecast. Soc. Change, vol. 129, pp. 154–163, Apr. 2018, doi: 10.1016/j.techfore.2018.01.002. [137] G. Alkawsi, N. Ali, and Y. Baashar, “The moderating role of personal innovativeness and users experience in accepting the smart meter technology,” Appl. Sci., vol. 11, no. 8, 2021, doi: 10.3390/app11083297. [138] S. C. Jeong, S. H. Kim, J. Y. Park, and B. Choi, “Domain-specific innovativeness and new product adoption: A case of wearable devices,” Telemat. Informatics, vol. 34, no. 5, pp. 399–412, Aug. 2017, doi: 10.1016/j.tele.2016.09.001. [139] M. R.- STANESCU, DF, “Applying Technology Acceptance Model (TAM) to Explore Users’ ˘ Behavioral Intention to Adopt Wearables Technologies,” in Strategica International Conference – Shaping the Future of Business and Economy -9th Edition, 2021, pp. 817–829. [140] J. C. Hong, P. H. Lin, and P. C. Hsieh, “The effect of consumer innovativeness on perceived value and continuance intention to use smartwatch,” Comput. Human Behav., vol. 67, pp. 264–272, Feb. 2017, doi: 10.1016/j.chb.2016.11.001. Bibliography 132 [141] S. H. W. Chuah, P. A. Rauschnabel, N. Krey, B. Nguyen, T. Ramayah, and S. Lade, “Wearable technologies: The role of usefulness and visibility in smartwatch adoption,” Comput. Human Behav., vol. 65, pp. 276–284, 2016, doi: 10.1016/j.chb.2016.07.047. [142] S. Ozkan and I. E. Kanat, “E-Government adoption model based on theory of planned behavior: Empirical validation,” Gov. Inf. Q., vol. 28, no. 4, pp. 503–513, 2011, doi: 10.1016/j.giq.2010.10.007. [143] S. M. Lee and D. H. Lee, “Correction to: Healthcare wearable devices: an analysis of key factors for continuous use intention (Service Business, (2020), 14, 4, (503-531), 10.1007/s11628-020-00428-3),” Service Business, vol. 14, no. 4. Springer Science and Business Media Deutschland GmbH, p. 577, Dec. 01, 2020, doi: 10.1007/s11628-020-00429-2. [144] M. Al-Emran, R. Al-Maroof, M. A. Al-Sharafi, and I. Arpaci, “What impacts learning with wearables? An integrated theoretical model,” Interact. Learn. Environ., 2020, doi: 10.1080/10494820.2020.1753216. [145] M. S. Talukder, R. Chiong, Y. Bao, and B. Hayat Malik, “Acceptance and use predictors of fitness wearable technology and intention to recommend: An empirical study,” Ind. Manag. Data Syst., vol. 119, no. 1, pp. 170–188, Feb. 2019, doi: 10.1108/IMDS-01-2018- 0009. [146] B. Mertins and J. Austermann, “Technology Acceptance Model Revised: An Investigation on the Managerial Attitudes towards Using Social Media in Innovation Processes (Dissertation),” 2014. [147] J. Lu, J. E. Yao, and C. S. Yu, “Personal innovativeness, social influences and adoption of wireless Internet services via mobile technology,” J. Strateg. Inf. Syst., vol. 14, no. 3, pp. 245–268, 2005, doi: 10.1016/j.jsis.2005.07.003. [148] J. B. Cowen, “The Influence of Perceived Usefulness, Perceived Ease of Use, and Subjective Norm on the Use of Computed Radiography Systems: A Pilot Study,” Desertation, Master, pp. 1–20, 2009. [149] J. Pimentel, “A note on the usage of Likert Scaling for research data analysis,” Usm R D, vol. 18, no. 2, pp. 109–112, 2010. Bibliography 133 [150] K. J. Kim and D. H. Shin, “An acceptance model for smart watches: Implications for the adoption of future wearable technology,” Internet Res., vol. 25, no. 4, pp. 527–541, Aug. 2015, doi: 10.1108/IntR-05-2014-0126. [151] M. R. Mart´ınez-Torres, S. L. Toral Mar´ın, F. B. Garc´ıa, S. G. V´azquez, M. A. Oliva, and T. Torres, “A technological acceptance of e-learning tools used in practical and laboratory teaching, according to the European higher education area,” Behav. Inf. Technol., vol. 27, no. 6, pp. 495–505, Nov. 2008, doi: 10.1080/01449290600958965. [152] A. Marakhimov and J. Joo, “Consumer adaptation and infusion of wearable devices for healthcare,” Comput. Human Behav., vol. 76, pp. 135–148, 2017, doi: 10.1016/j.chb.2017.07.016. [153] N. Shrestha, “Factor Analysis as a Tool for Survey Analysis,” Am. J. Appl. Math. Stat., vol. 9, no. 1, pp. 4–11, 2021, doi: 10.12691/ajams-9-1-2. [154] J. D. Hundleby and J. Nunnally, “Psychometric Theory,” Am. Educ. Res. J., vol. 5, no. 3, p. 431, 1968, doi: 10.2307/1161962. [155] C. Fornell and D. F. Larcker, “Evaluating Structural Equation Models with Unobservable Variables and Measurement Error,” J. Mark. Res., vol. 18, no. 1, pp. 39–50, Feb. 1981, doi: 10.1177/002224378101800104. [156] M. K. O. Lee, C. M. K. Cheung, and Z. Chen, “Acceptance of Internet-based learning medium: The role of extrinsic and intrinsic motivation,” Inf. Manag., vol. 42, no. 8, pp. 1095–1104, 2005, doi: 10.1016/j.im.2003.10.007. [157] C. Fornell and F. L. Bookstein, “Two Structural Equation Models: LISREL and PLS Applied to Consumer Exit-Voice Theory,” J. Mark. Res., vol. 19, no. 4, pp. 440–452, Nov. 1982, doi: 10.1177/002224378201900406. [158] W. S. Wu, W. Y. Lin, and M. Y. Lee, “Forward-flexed posture detection for the early Parkinson’s disease symptom,” in Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, 2014, vol. 2014-Janua, no. January, pp. 1181–1185, doi: 10.1109/SMC.2014.6974074. [159] M. L. Cheung et al., “Examining consumers’ adoption of wearable healthcare technology: The role of health attributes,” Int. J. Environ. Res. Public Health, vol. 16, no. 13, p. 2257, Jun. 2019, doi: 10.3390/ijerph16132257. Bibliography 134 [160] S. Liao, J. C. Hong, M. H. Wen, Y. C. Pan, and Y. W. Wu, “Applying Technology Acceptance Model (TAM) to explore Users’ Behavioral Intention to Adopt a Performance Assessment System for E-book Production,” Eurasia J. Math. Sci. Technol. Educ., vol. 14, no. 10, pp. 1–12, 2018, doi: 10.29333/ejmste/93575. [161] M. de los A. Morata-Ram´ırez and F. P. Holgado-Tello, “Construct Validity of Likert Scales ´ through Confirmatory Factor Analysis: A Simulation Study Comparing Different Methods of Estimation Based on Pearson and Polychoric Correlations,” Int. J. Soc. Sci. Stud., vol. 1, no. 1, 2013, doi: 10.11114/ijsss.v1i1.27. [162] V. Savalei, D. G. Bonett, and P. M. Bentler, “CFA with binary variables in small samples: A comparison of two methods,” Front. Psychol., vol. 5, no. OCT, p. 1515, 2014, doi: 10.3389/fpsyg.2014.01515. [163] H. KOGAR and E. YILMAZ KO ˘ GAR, “Comparison of Different Estimation Methods for ˘ Categorical and Ordinal Data in Confirmatory Factor Analysis,” E˘gitimde ve Psikolojide Ol¸cme ve De˘gerlendirme Derg., vol. 6, no. 2, pp. 351–364, Jan. 2015, doi: ¨ 10.21031/epod.94857. [164] A. Alambaigi, I. A.-I. J. Of, and U. 2016, “Technology Acceptance Model (TAM) As a Predictor Model for Explaining Agricultural Experts Behavior in Acceptance of ICT,” Int. J. Agric. Manag. Dev., vol. 6, no. 2, pp. 235–247, 2016, doi: 10.22004/ag.econ.262557. [165] Y. R. Tsai, “Applying the technology acceptance model (TAM) to explore the effects of a course management system (CMS)-assisted efl writing instruction,” CALICO J., vol. 32, no. 1, pp. 153–171, 2015, doi: 10.1558/calico.v32i1.25961. [166] H. Baumgartner and C. Homburg, “Applications of structural equation modeling in marketing and consumer research: A review,” Int. J. Res. Mark., vol. 13, no. 2, pp. 139–161, 1996, doi: 10.1016/0167-8116(95)00038-0. [167] W. J. Doll, T. S. Raghunathan, J. S. Lim, and Y. P. Gupta, “A confirmatory factor analysis of the user information satisfaction instrument,” Inf. Syst. Res., vol. 6, no. 2, pp. 177–188, 1995, doi: 10.1287/isre.6.2.177. [168] L. T. Hu and P. M. Bentler, “Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives,” Struct. Equ. Model., vol. 6, no. 1, pp. 1–55, 1999, doi: 10.1080/10705519909540118. Bibliography 135 [169] K. J. Kim and S. S. Sundar, “Does screen size matter for smartphones? Utilitarian and hedonic effects of screen size on smartphone adoption,” Cyberpsychology, Behav. Soc. Netw., vol. 17, no. 7, pp. 466–473, Jul. 2014, doi: 10.1089/cyber.2013.0492. [170] J. Hair, W. Black, B. Babin, and R. Anderson, “Multivariate Data Analysis: A Global Perspective,” in Multivariate Data Analysis: A Global Perspective, 7th ed., vol. 7th, Pearson Education, Upper Saddle River, 2010. [171] D. Bartholomew, M. Knott, and I. Moustaki, Latent Variable Models and Factor Analysis: A Unified Approach: 3rd Edition. 2011. [172] D. Gefen, D. Straub, and M.-C. Boudreau, “Structural Equation Modeling and Regression: Guidelines for Research Practice,” Commun. Assoc. Inf. Syst., vol. 4, 2000, doi: 10.17705/1cais.00407. [173] R. Singh, H. S. Sandhu, B. A. Metri, and R. Kaur, “Organizational Performance and Retail Challenges: A Structural Equation Approach,” iBusiness, vol. 03, no. 02, pp. 159–168, 2011, doi: 10.4236/ib.2011.32022. [174] M. W. Browne and R. Cudeck, “Alternative Ways of Assessing Model Fit,” Sociol. Methods Res., vol. 21, no. 2, pp. 230–258, 1992, doi: 10.1177/0049124192021002005. [175] P. M. Bentler and D. G. Bonett, “Significance tests and goodness of fit in the analysis of covariance structures,” Psychol. Bull., vol. 88, no. 3, pp. 588–606, 1980, doi: 10.1037/0033- 2909.88.3.588. [176] P. M. Bentler, “Comparative fit indexes in structural models,” Psychol. Bull., vol. 107, no. 2, pp. 238–246, 1990, doi: 10.1037/0033-2909.107.2.238. [177] J. Miller and O. Khera, “Digital Library Adoption and the Technology Acceptance Model: A Cross-Country Analysis,” Electron. J. Inf. Syst. Dev. Ctries., vol. 40, no. 1, pp. 1–19, Jan. 2010, doi: 10.1002/j.1681-4835.2010.tb00288.x. [178] H. Xu and S. Gupta, “The effects of privacy concerns and personal innovativeness on potential and experienced customers’ adoption of location-based services,” Electron. Mark., vol. 19, no. 2–3, pp. 137–149, Aug. 2009, doi: 10.1007/s12525-009-0012-4. [179] R. Agarwal and J. Prasad, “A Conceptual and Operational Definition of Personal Innovativeness in the Domain of Information Technology,” Inf. Syst. Res., vol. 9, no. 2, pp. 204–215, 1998, doi: 10.1287/isre.9.2.204. Bibliography 136 [180] P. A. Dabholkar and R. P. Bagozzi, “An attitudinal model of technology-based self-service: Moderating effects of consumer traits and situational factors,” J. Acad. Mark. Sci., vol. 30, no. 3, pp. 184–201, 2002, doi: 10.1177/0092070302303001. [181] J. L. Pimentel, “Some Biases in Likert Scaling Usage and its Correction — International Journal of Sciences: Basic and Applied Research (IJSBAR),” Int. J. Sci., vol. 45, no. 1, pp. 183–191, 2019. [182] J. T. Croasmun and L. Ostrom, “Using Likert-Type Scales in the Social Sciences,” J. Adult Educ., vol. 40, no. 1, pp. 19–22, 2011. [183] L. Chang, “A Psychometric Evaluation of 4-Point and 6-Point Likert-Type Scales in Relation to Reliability and Validity,” Appl. Psychol. Meas., vol. 18, no. 3, pp. 205–215, 1994, doi: 10.1177/014662169401800302. [184] A. A. Igolkina and G. Meshcheryakov, “semopy: A python Package for Structural Equation Modeling,” Struct. Equ. Model., vol. 27, no. 6, pp. 952–963, 2020, doi: 10.1080/10705511.2019.1704289. [185] “Comparison of virtual reality headsets - Wikipedia”. “https://en.wikipedia.org/wiki/ Comparison of virtual reality headsets” (accessed Apr. 06, 2022). [186] Roessingh, J. J. M., and B. G. Hilburn. ”The power law of practice in adaptive training applications.” (2000). [187] Johnson, Eric J., Steven Bellman, and Gerald L. Lohse. ”Cognitive lock-in and the power law of practice.” Journal of Marketing 67.2 (2003): 62-75. |
en_US |