dc.identifier.citation |
[1] B. B. Chaudhuri and U. Pal, “A complete printed Bangla OCR system,” Pattern Recognit., vol. 31, no. 5, pp. 531–549, 1998, doi: 10.1016/S0031-3203(97)00078-2. [2] F. Yeasmin Omee, S. Shabbir Himel, and A. Naser Bikas, “A Complete Workflow for Development of Bangla OCR,” Int. J. Comput. Appl., vol. 21, no. 9, pp. 1–6, 2011, doi: 10.5120/2543-3483. [3] A. K. M. S. A. Rabby, S. Haque, M. S. Islam, S. Abujar, and S. A. Hossain, Ekush: A Multipurpose and Multitype Comprehensive Database for Online Off-Line Bangla Handwritten Characters, vol. 1037. Springer Singapore, 2019. [4] J. Ferdous, S. Karmaker, A. K. M. S. A. Rabby, and S. A. Hossain, “MatriVasha: A Multipurpose Comprehensive Database for Bangla Handwritten Compound Characters,” Lect. Notes Networks Syst., vol. 164, pp. 813–821, 2021, doi: 10.1007/978-981-15-9774-9_74 [5] M. F. Mridha, A. Q. Ohi, M. A. Ali, M. I. Emon, and M. M. Kabir, “BanglaWriting : A multi-purpose offline Bangla handwriting dataset,” Data Br., vol. 34, p. 106633, 2021, doi: 10.1016/j.dib.2020.106633. [6] P. P. Roy, A. K. Bhunia, A. Das, P. Dey, and U. Pal, “HMM-based Indic handwritten word recognition using zone segmentation,” Pattern Recognit., vol. 60, pp. 1057– 1075, 2016, doi: 10.1016/j.patcog.2016.04.012. [7] S. Malakar, R. Sarkar, S. Basu, M. Kundu, and M. Nasipuri, “An image database of handwritten Bangla words with automatic benchmarking facilities for character segmentation algorithms,” Neural Comput. Appl., vol. 33, no. 1, pp. 449–468, 2021, doi: 10.1007/s00521-020-04981-w. [8] S. Basu, R. Sarkar, N. Das, M. Kundu, M. Nasipuri, and D. K. Basu, “A fuzzy technique for segmentation of handwritten Bangla word images,” Proc. - Int. Conf. Comput. Theory Appl. ICCTA 2007, no. March, pp. 427–432, 2007, doi: 10.1109/ICCTA.2007.7. 38 [9] R. Sarkar, N. Das, S. Basu, M. Kundu, M. Nasipuri, and D. K. Basu, “CMATERdb1: A database of unconstrained handwritten Bangla and Bangla-English mixed script document image,” Int. J. Doc. Anal. Recognit., vol. 15, no. 1, pp. 71–83, 2012, doi: 10.1007/s10032-011-0148-6. [10] Y. Park, “Discrete Hough transform using line segment representation for line detection,” Opt. Eng., vol. 50, no. 8, p. 087004, 2011, doi: 10.1117/1.3607414. [11] V. Papavassiliou, T. Stafylakis, V. Katsouros, and G. Carayannis, “Handwritten document image segmentation into text lines and words,” Pattern Recognit., vol. 43, no. 1, pp. 369–377, 2010, doi: 10.1016/j.patcog.2009.05.007. [12] A. K. M. Shahariar, A. Rabby, S. Haque, S. Abujar, and S. A. Hossain, “EkushNet : Using Convolutional Neural Network for Bangla Handwritten character recognition” Procedia Comput. Sci., vol. 143, no. December, pp. 603–610, 2018, doi: 10.1016/j.procs.2018.10.437. [13] S. Haque, S. Abujar, S. Abujar, S. Akhter, and S. A. Hossain, “BornoNet : Bangla Handwritten Characters Recognition Using Convolutional Neural Network Convolutional Neural Network,” vol. 00, 2018. [14] S. Irfan and A. Meerza, “Performance Evaluation of Different Algorithms for Handwritten Isolated Bangla Character Recognition,” 2019 Int. Conf. Robot. Signal Process. Tech., pp. 412–416, 2019. [15] M. Biswas et al., “BanglaLekha-Isolated: A Comprehensive Bangla Handwritten Character Dataset,” pp. 1–4, 2017, [Online]. Available: http://arxiv.org/abs/1703. 10661. [16] R. Sarkar, S. Malakar, N. Das, S. Basu, M. Kundu, and M. Nasipuri, “Word extraction and character segmentation from text lines of unconstrained handwritten Bangla document images,” J. Intell. Syst., vol. 20, no. 3, pp. 227–260, 2011, doi: 10.1515/JISYS.2011.013. 39 [17] P. K. Singh, S. Sinha, S. P. Chowdhury, R. Sarkar, and M. Nasipuri, “Word segmentation from unconstrained handwritten Bangla document images using distance transform,” 6th Int. Conf. Adv. Comput. Control. Telecommun. Technol. ACT 2015, pp. 473–484, 2015, doi: 10.1515/9783110450101-041. [18] U. Pal and S. Datta, “Segmentation of Bangla unconstrained handwritten text,” Proc. Int. Conf. Doc. Anal. Recognition, ICDAR, vol. 2003-Janua, no. August, pp. 1128–1132, 2003, doi: 10.1109/ICDAR.2003.1227832. [19] M. Z. Alom, P. Sidike, M. Hasan, T. M. Taha, and V. K. Asari, “Handwritten Bangla Character Recognition Using the State-of-the-Art Deep Convolutional Neural Networks,” Comput. Intell. Neurosci., vol. 2018, pp. 1–12, 2018, doi: 10.1155/2018/6747098. [20] D. Liu and J. Yu, “Otsu method and K-means,” Proc. - 2009 9th Int. Conf. Hybrid Intell. Syst. HIS 2009, vol. 1, no. 2, pp. 344–349, 2009, doi: 10.1109/HIS.2009.74. [21] H. Fan, L. Zhu, and Y. Tang, “Skew detection in document images based on rectangular active contour,” Int. J. Doc. Anal. Recognit., vol. 13, no. 4, pp. 261–269, 2010, doi: 10.1007/s10032-010-0119-3. [22] N. Ouwayed and A. Belaত্তd, “A general approach for multi-oriented text line extraction of handwritten documents,” Int. J. Doc. Anal. Recognit., vol. 15, no. 4, pp. 297–314, 2012, doi: 10.1007/s10032-011-0172-6. [23] L. Zhou, Y. Lu, and C. L. Tan, “Bangla/English script identification based on analysis of connected component profiles,” Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 3872 LNCS, pp. 243–254, 2006, doi: 10.1007/11669487_22. [24] “GitHub - subashis-dev/Bangla-handwritten-word-segmentation-from-document: Segment all the words from a Bengali handwritten document easily.” https://gith ub.com/subashis-dev/Bangla-handwritten-word-segmentation-from-document (accessed Feb. 23, 2022). 40 [25] H. Kong, “A MEDIAL AXIS BASED THINNING STRATEGY AND STRUCTURAL FEATURE Soumen Bag and Gaurav Harit Department of Computer Science and Engineering Indian Institute of Technology Kharagpur , Kharagpur-721 302 , India,” pp. 2173–2176, 2010. [26] B. B. Chaudhuri, “Corpus-based empirical analysis of form , function and frequency of characters used in Bangla.” [27] “Letter frequency.” http://simia.net/letters/ (accessed Mar. 03, 2022). |
en_US |