dc.identifier.citation |
[1] L. Gong, J. Crego, and J. Senellart, “Enhanced transformer model for data-totext generation,” in Proceedings of the 3rd Workshop on Neural Generation and Translation, Nov. 2019. [2] K. Chen, F. Li, B. Hu, W. Peng, Q. Chen, H. Yu, and Y. Xiang, “Neural datato-text generation with dynamic content planning,” Knowledge-Based Systems, 2021. [3] J. Sreevalsan-Nair, K. Dadhich, and S. C. Daggubati, “Tensor fields for data extraction from chart images: bar charts and scatter plots,” in Topological Methods in Data Analysis and Visualization VI. Springer, 2021. [4] J. Luo, Z. Li, J. Wang, and C.-Y. Lin, “Chartocr: Data extraction from charts images via a deep hybrid framework,” in Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, 2021. [5] F. Zhou, Y. Zhao, W. Chen, Y. Tan, Y. Xu, Y. Chen, C. Liu, and Y. Zhao, “Reverseengineering bar charts using neural networks,” Journal of Visualization, vol. 24, no. 2, 2021. [6] K. Dadhich, S. C. Daggubati, and J. Sreevalsan-Nair, “Barchartanalyzer: Digitizing images of bar charts.” in BarChartAnalyzer, 2021. [7] J. Obeid and E. Hoque, “Chart-to-text: Generating natural language descriptions for charts by adapting the transformer model,” arXiv preprint arXiv:2010.09142, 2020. [8] J. Zhu, J. Ran, R. K.-w. Lee, K. Choo, and Z. Li, “Autochart: A dataset for chartto-text generation task,” arXiv preprint arXiv:2108.06897, 2021. [9] T.-Y. Hsu, C. L. Giles, and T.-H. Huang, “SciCap: Generating captions for scientific figures,” in Findings of the Association for Computational Linguistics: EMNLP 2021. Punta Cana, Dominican Republic: Association for 48 Computational Linguistics, Nov. 2021, pp. 3258–3264. [Online]. Available: https://aclanthology.org/2021.findings-emnlp.277 [10] S. Kanthara, R. T. K. Leong, X. Lin, A. Masry, M. Thakkar, E. Hoque, and S. Joty, “Chart-to-text: A large-scale benchmark for chart summarization,” arXiv preprint arXiv:2203.06486, 2022. [11] J. Obeid and E. Hoque, “Chart-to-text: Generating natural language descriptions for charts by adapting the transformer model,” in Proceedings of the 13th International Conference on Natural Language Generation. Dublin, Ireland: Association for Computational Linguistics, Dec. 2020, pp. 138–147. [Online]. Available: https://aclanthology.org/2020.inlg-1.20 [12] D. H. Kim, E. Hoque, and M. Agrawala, Answering Questions about Charts and Generating Visual Explanations. New York, NY, USA: Association for Computing Machinery, 2020, p. 1–13. [Online]. Available: https: //doi.org/10.1145/3313831.3376467 [13] G. Carenini, C. Conati, E. Hoque, and B. Steichen, “User task adaptation in multimedia presentations.” in UMAP Workshops. Citeseer, 2013. [14] L. Ferres, G. Lindgaard, L. Sumegi, and B. Tsuji, “Evaluating a tool for improving accessibility to charts and graphs,” ACM Trans. Comput.- Hum. Interact., vol. 20, no. 5, nov 2013. [Online]. Available: https: //doi.org/10.1145/2533682.2533683 [15] S. Carberry, S. Elzer, and S. Demir, “Information graphics: an untapped resource for digital libraries,” in Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, 2006. [16] Z. Li, M. Stagitis, S. Carberry, and K. F. McCoy, “Towards retrieving relevant information graphics,” in Proceedings of the 36th international ACM SIGIR conference on research and development in information retrieval, 2013, pp. 789–792. [17] E. Reiter, S. G. Sripada, J. Hunter, J. Yu, and I. P. Davy, “Choosing words in computer-generated weather forecasts,” Artif. Intell., vol. 167, pp. 137–169, 2005. [18] M. Fasciano and G. Lapalme, “Intentions in the coordinated generation of graphics and text from tabular data,” Knowledge and Information Systems, vol. 2, no. 3, pp. 310–339, 2000. [19] V. O. Mittal, J. D. Moore, G. Carenini, and S. Roth, “Describing complex charts in natural language: A caption generation system,” Computational 49 Linguistics, vol. 24, no. 3, pp. 431–467, 1998. [Online]. Available: https://aclanthology.org/J98-3004 [20] “Quillbot,” https://quillbot.com/. [Online]. Available: https://quillbot.com/ [21] “Wordsmith,” https://lexically.net/wordsmith/index.html. [Online]. Available: https://lexically.net/wordsmith/index.html [22] H. Mei, M. Bansal, and M. R. Walter, “What to talk about and how? selective generation using lstms with coarse-to-fine alignment,” arXiv preprint arXiv:1509.00838, 2015. [23] J. Zhu, J. Ran, R. K.-W. Lee, Z. Li, and K. Choo, “AutoChart: A dataset for chart-to-text generation task,” in Proceedings of the International Conference on Recent Advances in Natural Language Processing (RANLP 2021). Held Online: INCOMA Ltd., Sep. 2021, pp. 1636–1644. [Online]. Available: https://aclanthology.org/2021.ranlp-main.183 [24] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances in neural information processing systems, 2017. [25] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word representations in vector space,” arXiv preprint arXiv:1301.3781, 2013. [26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors for word representation,” in Proceedings of the 2014 conference on empirical methods in natural language processing (EMNLP), 2014. [27] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural computation, vol. 9, no. 8, pp. 1735–1780, 1997. [28] F. A. Gers, J. Schmidhuber, and F. Cummins, “Learning to forget: Continual prediction with lstm,” Neural computation, 2000. [29] K. Cho, B. Van Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn encoderdecoder for statistical machine translation,” arXiv preprint arXiv:1406.1078, 2014. [30] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirectional transformers for language understanding,” arXiv preprint arXiv:1810.04805, 2018. [31] C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, M. Matena, Y. Zhou, W. Li, and P. J. Liu, “Exploring the limits of transfer learning with a unified text-to-text transformer,” arXiv preprint arXiv:1910.10683, 2019. 50 [32] M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, O. Levy, V. Stoyanov, and L. Zettlemoyer, “Bart: Denoising sequence-to-sequence pre-training for natural language generation, translation, and comprehension,” arXiv preprint arXiv:1910.13461, 2019. [33] S. Wiseman, S. M. Shieber, and A. M. Rush, “Challenges in data-to-document generation,” arXiv preprint arXiv:1707.08052, 2017. [34] R. Puduppully, L. Dong, and M. Lapata, “Data-to-text generation with entity modeling,” arXiv preprint arXiv:1906.03221, 2019. [35] D. Bahdanau, D. Serdyuk, P. Brakel, N. R. Ke, J. Chorowski, A. Courville, and Y. Bengio, “Task loss estimation for sequence prediction,” arXiv preprint arXiv:1511.06456, 2015. [36] C. Gulcehre, S. Ahn, R. Nallapati, B. Zhou, and Y. Bengio, “Pointing the unknown words,” arXiv preprint arXiv:1603.08148, 2016. [37] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. [38] R. Lebret, D. Grangier, and M. Auli, “Neural text generation from structured data with application to the biography domain,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing. Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 1203–1213. [Online]. Available: https://aclanthology.org/D16-1128 [39] C. Thomson, E. Reiter, and S. Sripada, “SportSett:basketball - a robust and maintainable data-set for natural language generation,” in Proceedings of the Workshop on Intelligent Information Processing and Natural Language Generation. Santiago de Compostela, Spain: Association for Computational Lingustics, Sep. 2020, pp. 32–40. [Online]. Available: https://aclanthology.org/ 2020.intellang-1.4 [40] “knoema,” https://knoema.com/atlas. [Online]. Available: https://knoema.com/ atlas [41] “statista,” https://www.statista.com/. [Online]. Available: https://www.statista. com/ [42] L. Gong, J. M. Crego, and J. Senellart, “Enhanced transformer model for data-totext generation,” in Proceedings of the 3rd Workshop on Neural Generation and Translation, 2019, pp. 148–156. 51 [43] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception architecture for computer vision,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2016. [44] M. Post, “A call for clarity in reporting BLEU scores,” in Proceedings of the Third Conference on Machine Translation: Research Papers. Brussels, Belgium: Association for Computational Linguistics, Oct. 2018, pp. 186–191. [Online]. Available: https://aclanthology.org/W18-6319 [45] T. Sellam, D. Das, and A. Parikh, “BLEURT: Learning robust metrics for text generation,” in Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Online: Association for Computational Linguistics, Jul. 2020, pp. 7881–7892. [Online]. Available: https://aclanthology.org/2020. acl-main.704 [46] L. Azzopardi, M. Girolami, and K. van Risjbergen, “Investigating the relationship between language model perplexity and ir precision-recall measures,” ser. SIGIR ’03. New York, NY, USA: Association for Computing Machinery, 2003. [Online]. Available: https://doi.org/10.1145/860435.860505 [47] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert pretraining approach,” arXiv preprint arXiv:1907.11692, 2019. |
en_US |