Hybrid QPSO assisted Incremental Conductance MPPT Algorithm under Extreme Partial Shading Conditions

Show simple item record

dc.contributor.author Hassan, Quazi Rafid
dc.contributor.author Tabassum, Sanzana
dc.contributor.author Nafi, Imtiaz Mahmud
dc.date.accessioned 2023-05-03T09:41:56Z
dc.date.available 2023-05-03T09:41:56Z
dc.date.issued 2022-05-30
dc.identifier.citation [1] IRENA, Renewable capacity statistics 2020 International Renewable Energy Agency. 2020. [2] Z. Cheng, H. Zhou, and H. Yang, “Research on MPPT control of PV system based on PSO algorithm,” 2010 Chinese Control Decis. Conf. CCDC 2010, pp. 887–892, 2010, doi: 10.1109/CCDC.2010.5498097. [3] J. J. Nedumgatt, K. B. Jayakrishnan, S. Umashankar, D. Vijayakumar, and D. P. Kothari, “Perturb and observe MPPT algorithm for solar PV systems-modeling and simulation,” Proc. - 2011 Annu. IEEE India Conf. Eng. Sustain. Solut. INDICON-2011, vol. 19, no. 1, 2011, doi: 10.1109/INDCON.2011.6139513. [4] A. Safari and S. Mekhilef, “Simulation and hardware implementation of incremental conductance MPPT with direct control method using cuk converter,” IEEE Trans. Ind. Electron., vol. 58, no. 4, pp. 1154–1161, 2011, doi: 10.1109/TIE.2010.2048834. 33 [5] M. I. Bahari, P. Tarassodi, Y. M. Naeini, A. K. Khalilabad, and P. Shirazi, “Algorithm For PhotoVoltaic Application,” pp. 1041–1044, 2016. [6] K. L. Lian, J. H. Jhang, and I. S. Tian, “A maximum power point tracking method based on perturb-and-observe combined with particle swarm optimization,” IEEE J. Photovoltaics, vol. 4, no. 2, pp. 626–633, 2014, doi: 10.1109/JPHOTOV.2013.2297513. [7] C. Sakthigokulrajan and K. Ravi, “Combined role of derived array configurations and MPSO based MPPT in improving the energy yield under partial shading conditions,” J. Build. Eng., vol. 9, no. July 2016, pp. 125–134, 2017, doi: 10.1016/j.jobe.2016.12.006. [8] T. Radjai, L. Rahmani, S. Mekhilef, and J. P. Gaubert, “Implementation of a modified incremental conductance MPPT algorithm with direct control based on a fuzzy duty cycle change estimator using dSPACE,” Sol. Energy, vol. 110, pp. 325–337, 2014, doi: 10.1016/j.solener.2014.09.014. [9] K. S. Tey and S. Mekhilef, “Modified incremental conductance MPPT algorithm to mitigate inaccurate responses under fast-changing solar irradiation level,” Sol. Energy, vol. 101, pp. 333–342, 2014, doi: 10.1016/j.solener.2014.01.003. [10] K. S. Tey, S. Mekhilef, and S. Member, “Modified Incremental Conductance Algorithm for Photovoltaic System Under Partial Shading Conditions and Load Variation.pdf,” vol. 61, no. 10, pp. 5384–5392, 2014. [11] Z. Liying, M. Liang, L. Zhigang, C. Mingxuan, and W. Jianwen, “Implementation and simulation analysis of GMPPT algorithm under partial shadow condition,” Energy Procedia, vol. 158, pp. 418–423, 2019, doi: 10.1016/j.egypro.2019.01.126. [12] Y. Li, D. Ju, Y. Wang, J. E. Wu, and Z. Dong, “A global optimization method for multiple peak photovoltaic MPPT,” Proc. IECON 2017 - 43rd Annu. Conf. IEEE Ind. Electron. Soc., vol. 2017-Janua, pp. 554–559, 2017, doi: 10.1109/IECON.2017.8216097. [13] S. Mohanty, B. Subudhi, and P. K. Ray, “A new MPPT design using grey Wolf optimization technique for photovoltaic system under partial shading conditions,” IEEE Trans. Sustain. Energy, vol. 7, no. 1, pp. 181–188, 2016, doi: 10.1109/TSTE.2015.2482120. [14] A. F. Mirza, M. Mansoor, Q. Ling, B. Yin, and M. Y. Javed, “A Salp-Swarm Optimization based MPPT technique for harvesting maximum energy from PV systems under partial shading conditions,” Energy Convers. Manag., vol. 209, no. October 2019, p. 112625, 2020, doi: 10.1016/j.enconman.2020.112625. [15] S. Titri, C. Larbes, K. Y. Toumi, and K. Benatchba, “A new MPPT controller based on the Ant colony optimization algorithm for Photovoltaic systems under partial shading conditions,” Appl. Soft Comput. J., vol. 58, pp. 465–479, 2017, doi: 10.1016/j.asoc.2017.05.017. [16] J. Ahmed and Z. Salam, “A Maximum Power Point Tracking (MPPT) for PV system using Cuckoo Search with partial shading capability,” Appl. Energy, vol. 119, pp. 118–130, 2014, doi: 10.1016/j.apenergy.2013.12.062. [17] D. P. Rini and S. M. Shamsuddin, “Particle Swarm Optimization: Technique, System and Challenges,” Int. J. Appl. Inf. Syst., vol. 1, no. 1, pp. 33–45, 2011, doi: 34 10.5120/ijais-3651. [18] A. A. Zaki Diab and H. Rezk, “Global MPPT based on flower pollination and differential evolution algorithms to mitigate partial shading in building integrated PV system,” Sol. Energy, vol. 157, pp. 171–186, 2017, doi: 10.1016/j.solener.2017.08.024. [19] K. Sundareswaran, S. Peddapati, and S. Palani, “MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies,” IEEE Trans. Energy Convers., vol. 29, no. 2, pp. 463–472, 2014, doi: 10.1109/TEC.2014.2298237. [20] A. soufyane Benyoucef, A. Chouder, K. Kara, S. Silvestre, and O. A. Sahed, “Artificial bee colony based algorithm for maximum power point tracking (MPPT) for PV systems operating under partial shaded conditions,” Appl. Soft Comput. J., vol. 32, pp. 38–48, 2015, doi: 10.1016/j.asoc.2015.03.047. [21] A. S. Oshaba, E. S. Ali, and S. M. Abd Elazim, “MPPT control design of PV system supplied SRM using BAT search algorithm,” Sustain. Energy, Grids Networks, vol. 2, pp. 51–60, 2015, doi: 10.1016/j.segan.2015.04.002. [22] M. S. Bouakkaz et al., “Dynamic performance evaluation and improvement of PV energy generation systems using Moth Flame Optimization with combined fractional order PID and sliding mode controller,” Sol. Energy, vol. 199, no. February, pp. 411–424, 2020, doi: 10.1016/j.solener.2020.02.055. [23] A. M. Eltamaly, M. S. Al-Saud, and A. G. Abo-Khalil, “Performance improvement of PV systems’ maximum power point tracker based on a scanning PSO particle strategy,” Sustain., vol. 12, no. 3, pp. 1–20, 2020, doi: 10.3390/su12031185. [24] J. Shi, W. Zhang, Y. Zhang, F. Xue, and T. Yang, “MPPT for PV systems based on a dormant PSO algorithm,” Electr. Power Syst. Res., vol. 123, pp. 100–107, 2015, doi: 10.1016/j.epsr.2015.02.001. [25] A. M. Eltamaly, H. M. H. Farh, and A. G. Abokhalil, “A novel PSO strategy for improving dynamic change partial shading photovoltaic maximum power point tracker,” Energy Sources, Part A Recover. Util. Environ. Eff., 2020, doi: 10.1080/15567036.2020.1769774. [26] P. S. Gavhane, S. Krishnamurthy, R. Dixit, J. P. Ram, and N. Rajasekar, “EL-PSO based MPPT for Solar PV under Partial Shaded Condition,” Energy Procedia, vol. 117, pp. 1047–1053, 2017, doi: 10.1016/j.egypro.2017.05.227. [27] K. Ishaque, Z. Salam, H. Taheri, and A. Shamsudin, “Maximum Power Point Tracking for PV system under partial shading condition via particle swarm optimization,” 2011 IEEE Appl. Power Electron. Colloquium, IAPEC 2011, vol. 2, no. 2, pp. 5–9, 2011, doi: 10.1109/IAPEC.2011.5779866. [28] M. GREEN et al., “Solar cell efficiency tables (version 40),” Ieee Trans Fuzzy Syst, vol. 20, no. 6, pp. 1114–1129, 2012, doi: 10.1002/pip. [29] Y. Zou, Y. Yu, Y. Zhang, and J. Lu, “MPPT control for PV generation system based on an improved IncCond algorithm,” Procedia Eng., vol. 29, pp. 105–109, 2012, doi: 10.1016/j.proeng.2011.12.677. [30] M. Abdulkadir and A. H. M. Yatim, “Hybrid maximum power point tracking technique based on PSO and incremental conductance,” 2014 IEEE Conf. Energy Conversion, CENCON 2014, pp. 271–276, 2014, doi: 10.1109/CENCON.2014.6967514. 35 [31] H. Bellia, R. Youcef, and M. Fatima, “A detailed modeling of photovoltaic module using MATLAB,” NRIAG J. Astron. Geophys., vol. 3, no. 1, pp. 53–61, 2014, doi: 10.1016/j.nrjag.2014.04.001. [32] H. Ibrahim and N. Anani, “Variations of PV module parameters with irradiance and temperature,” Energy Procedia, vol. 134, pp. 276–285, 2017, doi: 10.1016/j.egypro.2017.09.617. [33] Iw. Christopher and S. Assistant Professor, “Comparative Study of P&O and InC MPPT Algorithms,” Am. J. Eng. Res., vol. 02, no. 12, pp. 402–408, 2013, [Online]. Available: www.ajer.org. [34] R. B. A. Koad and A. F. Zobaa, “Comparison between the Conventional Methods and PSO Based MPPT Algorithm for Photovoltaic Systems,” Int. J. Electr. Robot. Electron. Commun. Eng., vol. 8, no. 4, pp. 673–678, 2014, doi: 10.5281/zenodo.1092094. [35] N. Rajasekar et al., “Application of modified particle swarm optimization for maximum power point tracking under partial shading condition,” Energy Procedia, vol. 61, pp. 2633–2639, 2014, doi: 10.1016/j.egypro.2014.12.265. [36] M. Mansoor, A. F. Mirza, Q. Ling, and M. Y. Javed, “Novel Grass Hopper optimization based MPPT of PV systems for complex partial shading conditions,” Sol. Energy, vol. 198, no. January, pp. 499–518, 2020, doi: 10.1016/j.solener.2020.01.070. [37] L. A. Soriano, P. Ponce, and A. Molina, “Analysis of DC-DC converters for photovoltaic applications based on conventional MPPT algorithms,” 2017 14th Int. Conf. Electr. Eng. Comput. Sci. Autom. Control. CCE 2017, 2017, doi: 10.1109/ICEEE.2017.8108884. [38] X. Yang, S. Deb, and A. C. B. Behaviour, “Cuckoo Search via L ´ evy Flights,” Ieee, pp. 210–214, 2009. [39] Y. Teuschl, B. Taborsky, and M. Taborsky, “How do cuckoos find their hosts? The role of habitat imprinting,” Anim. Behav., vol. 56, no. 6, pp. 1425–1433, 1998, doi: 10.1006/anbe.1998.0931. [40] X. S. Yang and S. Deb, “Multiobjective cuckoo search for design optimization,” Comput. Oper. Res., vol. 40, no. 6, pp. 1616–1624, 2013, doi: 10.1016/j.cor.2011.09.026. [41] P. Mohanty, G. Bhuvaneswari, R. Balasubramanian, and N. K. Dhaliwal, “MATLAB based modeling to study the performance of different MPPT techniques used for solar PV system under various operating conditions,” Renew. Sustain. Energy Rev., vol. 38, pp. 581–593, 2014, doi: 10.1016/j.rser.2014.06.001. [42] J. Sun, W. Xu, and B. Feng, “A global search strategy of Quantum-behaved Particle Swarm Optimization,” 2004 IEEE Conf. Cybern. Intell. Syst., pp. 111–116, 2004, doi: 10.1109/iccis.2004.1460396. [43] C. M. K. James, “The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space,” Mutat. Res. DNAging, vol. 275, no. 1, pp. 1–6, 1992, doi: 10.1016/0921-8734(92)90002-7. [44] S. Chen, “Quantum-behaved particle swarm optimization with weighted mean personal best position and adaptive local attractor,” Inf., vol. 10, no. 1, 2019, doi: 10.3390/info10010022. 36 [45] D. Pilakkat and S. Kanthalakshmi, “An improved P&O algorithm integrated with artificial bee colony for photovoltaic systems under partial shading conditions,” Sol. Energy, vol. 178, no. December 2018, pp. 37–47, 2019, doi: 10.1016/j.solener.2018.12.008. [46] F. Liu, S. Duan, F. Liu, B. Liu, and Y. Kang, “A variable step size INC MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 55, no. 7, pp. 2622–2628, 2008, doi: 10.1109/TIE.2008.920550. [47] Q. Mei, M. Shan, L. Liu, and J. M. Guerrero, “A novel improved variable step-size incremental-resistance MPPT method for PV systems,” IEEE Trans. Ind. Electron., vol. 58, no. 6, pp. 2427–2434, 2011, doi: 10.1109/TIE.2010.2064275. [48] E. M. Ahmed and M. Shoyama, “Novel stability analysis of variable step size incremental resistance INR MPPT for PV systems,” IECON Proc. (Industrial Electron. Conf., pp. 3894–3899, 2011, doi: 10.1109/IECON.2011.6119945. [49] N. H. Abdul Rahman, A. M. Omar, and E. H. Mat Saat, “A modification of variable step size INC MPPT in PV system,” Proc. 2013 IEEE 7th Int. Power Eng. Optim. Conf. PEOCO 2013, no. June, pp. 340–345, 2013, doi: 10.1109/PEOCO.2013.6564569. [50] A. Stracke, D. L. Danielopol, and W. Neubauer, “Comparative study of MPPT using variable step size for photovoltaic systems,” 2014 Second World Conf. Complex Syst., vol. 2008, no. 3, pp. 83–88, 2008. [51] C. Li, Y. Chen, D. Zhou, J. Liu, and J. Zeng, “A high-performance adaptive incremental conductance MPPT algorithm for photovoltaic systems,” Energies, vol. 9, no. 4, 2016, doi: 10.3390/en9040288. [52] S. Mohanty, B. Subudhi, and P. K. Ray, “A Grey Wolf-Assisted Perturb & Observe MPPT Algorithm for a PV System,” IEEE Trans. Energy Convers., vol. 32, no. 1, pp. 340–347, 2017, doi: 10.1109/TEC.2016.2633722. [53] B. N. Alajmi, K. H. Ahmed, S. J. Finney, and B. W. Williams, “A maximum power point tracking technique for partially shaded photovoltaic systems in microgrids,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1596–1606, 2013, doi: 10.1109/TIE.2011.2168796. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1871
dc.description Supervised by Dr. Fahim Abid, Assistant Professor, Department of Electrical and Electronic Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2022. en_US
dc.description.abstract Photovoltaic (PV) has seen rapid growth over the last decade because of its declining cost, minimal pollution, and easier maintenance. However, one major drawback of the PV systems is the non-linear characteristics of the output power caused by partial shading conditions (PSC). Varying weather phenomena, like temperature and solar irradiance, confront the PV with a multi-peak maximum power point tracking (MPPT) problem. To resolve this, many conventional and metaheuristic optimization MPPT algorithms have been proposed, some of which come with problems like slower tracking speed, increased oscillation, and no guarantee of accurate convergence at the global maximum power point (GMPP). This paper presents a hybrid quantum particle swarm optimization assisted variable incremental conductance (QPSOVIC) algorithm which efficiently tracks maximum power (Pmax) under varying weather conditions. The effectiveness of this method is validated through a comparative analysis among already established MPPT techniques like cuckoo search (CS), particle swarm optimization (PSO), and QPSO. This metaheuristic algorithm compensates for the conventional tracking algorithm’s inability to track the GMPP and bypasses premature convergence of the traditional PSO algorithm. MATLAB/Simulink has been used for modeling and demonstration of the proposed algorithm. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject maximum power point tracking (MPPT), partial shaded conditions (PSC), Photovoltaic (PV), particle swarm optimization (PSO), QPSO, incremental conductance (IC), metaheuristic algorithm en_US
dc.title Hybrid QPSO assisted Incremental Conductance MPPT Algorithm under Extreme Partial Shading Conditions en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics