dc.identifier.citation |
1. Jahanbakhshi, Ahmad, et al. “Classification of Sour Lemons Based on Apparent Defects Using Stochastic Pooling Mechanism in Deep Convolutional Neural Networks.” Scientia Horticulturae, Elsevier, 17 Dec. 2019, https://www.sciencedirect.com/science/article/abs/pii/S0304423819310192. 2. K.Lalitha, K.Muthulakshmi, A.Vinothini(2015) “ Proficient acquaintance based system for citrus leaf disease recognition and categorization”, 3. Bulanon, Duke M., et al. “Citrus Black Spot Detection Using Hyperspectral Image Analysis.” Agricultural Engineering International: CIGR Journal, 2013, https://cigrjournal.org/index.php/Ejounral/article/view/2382. 4. Kotze, Johannes Marthinus. “Studies on the Black Spot Disease of Citrus Caused by Guignardia Citricarpa Kiely with Particular Reference to Its Epiphytology and Control at Letaba.” UPSpace Home, University of Pretoria, 18 Jan. 2007, https://repository.up.ac.za/handle/2263/23891. 5. Lins, Emery C., et al. “Detection of Citrus Canker in Citrus Plants Using Laser-Induced Fluorescence Spectroscopy - Precision Agriculture.” SpringerLink, Springer US, 17 June 2009, https://link.springer.com/article/10.1007/s11119-009-9124-2. 6. Rauf, Hafiz Tayyab, et al. “A Citrus Fruits and Leaves Dataset for Detection and Classification of Citrus Diseases through Machine Learning.” Data in Brief, vol. 26, 2019, p. 104340., https://doi.org/10.1016/j.dib.2019.104340. 7. Sunny, Shoby and Dr. M. P. Indra Gandhi. “An Efficient Citrus Canker Detection Method based on Contrast Limited Adaptive Histogram Equalization Enhancement.” (2018). 8. Thangadurai, K. & Padmavathi, K. (2019). Citrus Canker Disease Detection Using Genetic Algorithm in Citrus Plants. 9. Sharif, Muhammad, et al. “Detection and Classification of Citrus Diseases in Agriculture Based on Optimized Weighted Segmentation and Feature Selection.” Computers and Electronics in Agriculture, vol. 150, 2018, pp. 220–234., https://doi.org/10.1016/j.compag.2018.04.023. 10. Doh, Benjamin, et al. “Automatic Citrus Fruit Disease Detection by Phenotyping Using Machine Learning.” 2019 25th International Conference on Automation and Computing (ICAC), 2019, https://doi.org/10.23919/iconac.2019.8895102. 46 11. Pan, Wenyan, et al. “A Smart Mobile Diagnosis System for Citrus Diseases Based on Densely Connected Convolutional Networks.” IEEE Access, vol. 7, 2019, pp. 87534– 87542., https://doi.org/10.1109/access.2019.2924973. 12. Russakovsky, Olga, et al. “Imagenet Large Scale Visual Recognition Challenge.” International Journal of Computer Vision, vol. 115, no. 3, 2015, pp. 211–252., https://doi.org/10.1007/s11263-015-0816-y. 13. Krizhevsky, Alex, et al. “ImageNet Classification with Deep Convolutional Neural Networks.” Communications of the ACM, vol. 60, no. 6, 2017, pp. 84–90., https://doi.org/10.1145/3065386. 14. Alzubaidi, Laith, et al. “Review of Deep Learning: Concepts, CNN Architectures, Challenges, Applications, Future Directions.” Journal of Big Data, vol. 8, no. 1, 2021, https://doi.org/10.1186/s40537-021-00444-8. 15. Howard, Andrew G., et al. “MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications.” ArXiv.org, 17 Apr. 2017, https://arxiv.org/abs/1704.04861. 16. Huang, Gao, et al. “Densely Connected Convolutional Networks.” ArXiv.org, 28 Jan. 2018, https://arxiv.org/abs/1608.06993. 17. Szegedy, Christian, et al. “Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning.” ArXiv.org, 23 Aug. 2016, https://arxiv.org/abs//1602.07261. 18. Zoph, Barret, et al. “Learning Transferable Architectures for Scalable Image Recognition.” ArXiv.org, 11 Apr. 2018, https://arxiv.org/abs/1707.07012. 19. Simonyan, Karen, and Andrew Zisserman. “Very Deep Convolutional Networks for LargeScale Image Recognition.” ArXiv.org, 10 Apr. 2015, https://arxiv.org/abs/1409.1556. 20. Czakon, Jakub. “24 Evaluation Metrics for Binary Classification (and When to Use Them).” Neptune.ai, 5 Jan. 2022, https://neptune.ai/blog/evaluation-metrics-binaryclassification. 21. Brownlee, Jason. “How to Calculate Precision, Recall, and F-Measure for Imbalanced Classification.” Machine Learning Mastery, 1 Aug. 2020, https://machinelearningmastery.com/precision-recall-and-f-measure-for-imbalancedclassification/. 22. Aniruddha. “AUC-Roc Curve in Machine Learning Clearly Explained.” Analytics Vidhya, 20 July 2020, https://www.analyticsvidhya.com/blog/2020/06/auc-roc-curve-machinelearning/. 47 23. Fao. “Citrus Fruit Fresh and Processed Statistical Bulletin 2020.” Policy Commons, FAO, 13 Sept. 2021, https://policycommons.net/artifacts/1813113/citrus-fruit-fresh-andprocessed-statistical-bulletin-2020/2549212/. 24. https://www.sciencedirect.com/science/article/abs/pii/S0168169917306373. 25. Prevalence and Severity of Different Citrus Diseases in Sylhet Region. https://www.researchgate.net/publication/341319002_Prevalence_and_severity_of_differ ent_citrus_diseases_in_Sylhet_region. 26. Uddin, H., Latif, A., Huq, F., Mia, A. T., Latif, A. and Ahmed, S. (2014). Pest Risk Analysis (PRA) of Citrus under Strengthening Phytosanitary Capacity in Bangladesh Project (SPCB), DAE. 27. Automatic Citrus Fruit Disease Detection by Phenotyping Using Machine ... https://www.researchgate.net/publication/337212837_Automatic_Citrus_Fruit_Disease_ Detection_by_Phenotyping_Using_Machine_Learning. 28.G. Csurka, “A comprehensive survey on domain adaptation for visual applications,” in Domain adaptation in computer vision applications. Springer, 2017, pp. 1–35. 29.A. Farahani, S. Voghoei, K. Rasheed, and H. R. Arabnia, “A brief review of domain adaptation,” arXiv preprint arXiv:2010.03978, 2020. 30.Farahani, Abolfazl, et al. “A Concise Review of Transfer Learning.” ArXiv.org, 5 Apr. 2021, https://arxiv.org/abs/2104.02144v1. 31.BAR, Y. et al. Deep learning with non-medical training used for chest pathology identification. In: SPIE medical imaging, Orlando, v. 9414, p. 7, 2015. 32.BUETTI-DINHA, A. et al. Deep neural networks outperform human expert's capacity in characterizing bioleaching bacterial biofilm composition. Biotechnology Reports, v. 22, p. 108–119. 2019. Available in: https://doi.org/10.1016/j.btre.2019.e00321. Access: 22 Ago. 2020. 48 33.GAD, A. F. Practical computer vision applications using deep learning with CNNs: With Detailed Examples in Python Using TensorFlow and Kivy. New York: Apress, 2018. E-book. ISBN: 978-1-4842-4167-7Available in: https://doi.org/10.1007/978-1-4842-4167-7. Access: 29 ago. 2020. 34.A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems, pages 1097–1105, 2012. 35.O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, et al. Imagenet large scale visual recognition challenge. 2014. 36.K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385, 2015. 37.C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna. Rethinking the inception architecture for computer vision. arXiv preprint arXiv:1512.00567, 2015. 38.M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mane,´ R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viegas, O. Vinyals, P. War- ´ den, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software available from tensorflow.org. 39.J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, A. Senior, P. Tucker, K. Yang, Q. V. Le, et al. Large scale distributed deep networks. In Advances in Neural Information Processing Systems, pages 1223–1231, 2012. 40.Szegedy, Christian, et al. “Inception-V4, Inception-Resnet and the Impact of Residual Connections on Learning.” ArXiv.org, 23 Aug. 2016, https://arxiv.org/abs/1602.07261v2. 41.F. Chollet. Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017. |
en_US |