Design and performance analysis of different photonic crystal fibers

Show simple item record

dc.contributor.author Rahman, Muntaha
dc.contributor.author Siraz, Sadia
dc.contributor.author Anzum, Mariea Sharaf
dc.date.accessioned 2023-05-04T05:25:46Z
dc.date.available 2023-05-04T05:25:46Z
dc.date.issued 2022-05-30
dc.identifier.citation [1] D. R. Thvenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: Recommended definitions and classification (Technical Report),” Pure Appl. Chem., vol. 71, no. 12, pp. 2333–2348, 1999, doi: 10.1351/pac199971122333. [2] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 2, 2021, doi: 10.1007/s00339- 020-04162-5. [3] V. Kaur and S. Singh, “A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing,” J. Comput. Electron., vol. 18, no. 1, pp. 319–328, 2019, doi: 10.1007/s10825-019-01305-7. [4] N. Chen, X. Zhang, M. Chang, X. Lu, and J. Zhou, “Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer,” Micromachines, vol. 11, no. 5, May 2020, doi: 10.3390/MI11050470. [5] M. R. Islam et al., “Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity,” Eur. Phys. J. Plus, vol. 136, no. 2, pp. 1–14, Feb. 2021, doi: 10.1140/epjp/s13360-021-01220-6. [6] H. F. Fakhruldeen and A. Z. Ghazi Zahid, “An Overview of Photonic Crystal Fiber (PCF),” no. April 2019, 2019, [Online]. Available: www.tnsroindia.org.in. [7] J. Qin, Z. Meng, J. Gao, Z. Fan, and X. Wang, “Surface plasmon enhanced polarization filter of high birefringence photonic crystal fiber with a partial core based on filled silver nanowire,” Opt. Fiber Technol., vol. 60, no. August, p. 102342, 2020, doi: 10.1016/j.yofte.2020.102342. [8] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 5, pp. 1–13, 2021, doi: 10.1007/s00339- 021-04472-2. [9] X. Yang, Y. Lu, B. Liu, and J. Yao, “Design of a Tunable Single-Polarization Photonic Crystal Fiber Filter with Silver-Coated and Liquid-Filled Air Holes,” IEEE Photonics J., vol. 9, no. 4, 2017, doi: 10.1109/JPHOT.2017.2720590. [10] Y. Gamal, B. M. Younis, S. F. Hegazy, Y. Badr, M. F. O. Hameed, and S. S. A. Obayya, “Highly efficient modified dual D-shaped PCF polarization filter,” Opt. Fiber Technol., vol. 62, no. January, p. 102459, 2021, doi: 10.1016/j.yofte.2021.102459. [11] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber 64 based refractive index sensor,” Opt. Quantum Electron., vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082-021-02748-8. [12] S. Islam et al., “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng., 2016, doi: 10.1117/1.oe.55.7.076117. [13] M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat, and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” Opt. Eng., 2017, doi: 10.1117/1.oe.56.4.043108. [14] M. R. Islam, M. A. Hossain, K. M. A. Talha, and R. K. Munia, “A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis,” Opt. Quantum Electron., 2020, doi: 10.1007/s11082-020-02532-0. [15] K. Ahmed et al., “Refractive Index-Based Blood Components Sensing in Terahertz Spectrum,” IEEE Sens. J., 2019, doi: 10.1109/JSEN.2019.2895166. [16] I. K. Yakasai, P. E. Abas, S. Ali, and F. Begum, “Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation,” Opt. Quantum Electron., vol. 51, no. 4, pp. 1–16, Apr. 2019, doi: 10.1007/s11082-019-1832-x. [17] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [18] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Goldcoated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens. Bio-Sensing Res., vol. 18, pp. 7–12, Apr. 2018, doi: 10.1016/J.SBSR.2018.02.003. [19] M. R. M. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, p. 165311, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [20] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., vol. 19, p. 103501, Dec. 2020, doi: 10.1016/j.rinp.2020.103501. [21] H. Wang, X. Yan, S. Li, and X. Zhang, “Tunable surface plasmon resonance polarization beam splitter based on dual-core photonic crystal fiber with magnetic fluid,” Opt. Quantum Electron., vol. 49, no. 11, pp. 1–10, 2017, doi: 10.1007/s11082-017-1190-5. [22] H. Huang et al., “A highly magnetic field sensitive photonic crystal fiber based on surface plasmon resonance,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–15, 2020, doi: 10.3390/s20185193. 65 [23] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra-Broadband Dual Peak Sensing,” IEEE Sens. J., vol. 22, no. 6, pp. 5628–5635, Mar. 2022, doi: 10.1109/JSEN.2022.3149715. [24] C. Liu et al., “The single-polarization filter composed of gold-coated photonic crystal fiber,” Phys. Lett. A, vol. 383, no. 25, pp. 3200–3206, Sep. 2019, doi: 10.1016/J.PHYSLETA.2019.07.012. [25] Q. Liu et al., “Broadband Single-Polarization Photonic Crystal Fiber Based on Surface Plasmon Resonance for Polarization Filter,” Plasmonics, vol. 10, no. 4, pp. 931–939, Aug. 2015, doi: 10.1007/S11468-015-9882-9. [26] M. S. Islam et al., “Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2996278. [27] “Silica fibers, explained by RP Photonics Encyclopedia; optical fiber, glass, fiber optics.” . [28] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev., vol. 4, no. 6, pp. 795–808, Nov. 2010, doi: 10.1002/LPOR.200900055. [29] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013, doi: 10.1002/ADMA.201205076. [30] S. Sharmin, A. Bosu, and S. Akter, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” 2018 Int. Conf. Adv. Electr. Electron. Eng. ICAEEE 2018, Feb. 2019, doi: 10.1109/ICAEEE.2018.8643003. [31] H. Abdullah, K. Ahmed, and S. A. Mitu, “Ultrahigh sensitivity refractive index biosensor based on gold coated nano-film photonic crystal fiber,” Results Phys., vol. 17, p. 103151, Jun. 2020, doi: 10.1016/j.rinp.2020.103151. [32] A. Dinovitser et al., “Exposed-core localized surface plasmon resonance biosensor,” vol. 36, no. 8, Aug. 2019. [33] A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invention Today, vol. 5, no. 2. pp. 157–163, Jun. 2013, doi: 10.1016/j.dit.2013.03.009. [34] M. S. Islam, J. Sultana, A. Dinovitser, B. W. H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun., 2018, doi: 10.1016/j.optcom.2017.12.061. 66 [35] M. Ahasan Habib, M. Shamim Anower, and M. Rabiul Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun., 2018, doi: 10.1016/j.optcom.2018.04.022. [36] A. Habib, “Ultra low loss and dispersion flattened microstructure fiber for terahertz applications,” Brill. Eng., 2020, doi: 10.36937/ben.2020.003.001. [37] M. J. B. M. Leon and M. A. Kabir, “Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss,” Sens. Bio-Sensing Res., 2020, doi: 10.1016/j.sbsr.2020.100335. [38] M. S. Islam et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J., 2018, doi: 10.1109/JSEN.2017.2775642. [39] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express, vol. 24, no. 3, p. 2485, Feb. 2016, doi: 10.1364/oe.24.002485. [40] A. A. Rifat, G. Amouzad Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Switzerland), vol. 15, no. 5, pp. 11499–11510, 2015, doi: 10.3390/s150511499. [41] M. N. Sakib et al., “High performance dual core D-shape PCF-SPR sensor modeling employing gold coat,” Results Phys., vol. 15, p. 102788, Dec. 2019, doi: 10.1016/j.rinp.2019.102788. [42] X. Yang, Y. Lu, B. Liu, and J. Yao, “Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF,” Appl. Opt., vol. 56, no. 15, p. 4369, May 2017, doi: 10.1364/ao.56.004369. [43] M. S. M. R. M. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, pp. 1–13, Jan. 2021, doi: 10.1007/s11468-020-01355-9. [44] Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt., vol. 51, no. 26, pp. 6361–6367, Sep. 2012, doi: 10.1364/AO.51.006361. [45] N. Cennamo, F. Arcadio, A. Minardo, D. Montemurro, and L. Zeni, “Experimental characterization of plasmonic sensors based on lab-built tapered plastic optical fibers,” Appl. Sci., vol. 10, no. 12, pp. 1–13, 2020, doi: 10.3390/app10124389. [46] S. Chu et al., “Influence of the Sub-Peak of Secondary Surface Plasmon Resonance onto the Sensing Performance of a D-Shaped Photonic Crystal Fibre Sensor,” IEEE Sens. J., vol. 67 21, no. 1, pp. 33–42, Jan. 2021, doi: 10.1109/JSEN.2019.2953393. [47] P. Bing et al., “Analysis of Dual-Channel Simultaneous Detection of Photonic Crystal Fiber Sensors,” Plasmonics, vol. 15, no. 4, pp. 1071–1076, Aug. 2020, doi: 10.1007/S11468-020- 01131-9. [48] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Polish Acad. Sci. Tech. Sci., vol. 62, no. 4, pp. 667–682, 2014, doi: 10.2478/bpasts-2014- 0073. [49] P. J. A. Sazio et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science (80-. )., vol. 311, no. 5767, pp. 1583–1586, 2006, doi: 10.1126/science.1124281. [50] M. S. Islam et al., “Dual-polarized highly sensitive plasmonic sensor in the visible to nearIR spectrum,” Opt. Express, vol. 26, no. 23, p. 30347, 2018, doi: 10.1364/oe.26.030347. [51] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032– 1035, Jun. 2018, doi: 10.1109/LPT.2018.2829920. [52] X. Meng et al., “An optical-fiber sensor with double loss peaks based on surface plasmon resonance,” Optik (Stuttg)., vol. 216, Aug. 2020, doi: 10.1016/J.IJLEO.2020.164938. [53] M. S. Aruna Gandhi, K. Senthilnathan, P. R. Babu, and Q. Li, “Highly sensitive localized surface plasmon polariton based d-type twin-hole photonic crystal fiber microbiosensor: Enhanced scheme for sers reinforcement,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–13, Sep. 2020, doi: 10.3390/S20185248. [54] Y. Gamal, B. M. Younis, S. F. Hegazy, Y. Badr, M. F. O. Hameed, and S. S. A. Obayya, “Highly efficient modified dual D-shaped PCF polarization filter,” Opt. Fiber Technol., vol. 62, Mar. 2021, doi: 10.1016/J.YOFTE.2021.102459. [55] B. H. Almewafy, N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, “Modified Dshaped SPR PCF polarization filter at telecommunication wavelengths,” Opt. Quantum Electron., vol. 51, no. 6, Jun. 2019, doi: 10.1007/S11082-019-1885-X. [56] Z. Fan et al., “Numerical Analysis of Polarization Filter Characteristics of D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance,” Plasmonics, vol. 10, no. 3, pp. 675–680, Jun. 2015, doi: 10.1007/S11468-014-9853-6. [57] L. Yang et al., “Design of bimetal-coated photonic crystal fiber filter based on surface plasmon resonance,” Results Opt., vol. 1, Nov. 2020, doi: 10.1016/J.RIO.2020.100027. [58] M. Li, L. Peng, G. Zhou, B. Li, Z. Hou, and C. Xia, “Design of Photonic Crystal Fiber Filter with Narrow Width and Single-Polarization Based on Surface Plasmon Resonance,” IEEE Photonics J., vol. 9, no. 3, Jun. 2017, doi: 10.1109/JPHOT.2017.2703979. 68 [59] J. Li, S. Li, S. Zhang, Y. Guo, and Y. Liu, “Broadband single-polarization filter of D-shaped photonic crystal fiber with a micro-opening based on surface plasmon resonance,” Appl. Opt. Vol. 57, Issue 27, pp. 8016-8022, vol. 57, no. 27, pp. 8016–8022, Sep. 2018, doi: 10.1364/AO.57.008016. en_US
dc.identifier.uri http://hdl.handle.net/123456789/1875
dc.description Supervised by Prof.Dr. Mohammad Rakibul Islam, Department of Electrical and Electronic Engineering (EEE), Islamic University of Technology (IUT), Board Bazar, Gazipur-1704, Bangladesh. This thesis is submitted in partial fulfillment of the requirements for the degree of Bachelor of Science in Electrical and Electronic Engineering, 2022. en_US
dc.description.abstract Over the years, countless designs of traditional PCFs and SPR-PCFs have been proposed by researchers with various structures, sensitivities, and confinement losses. However, a majority of such propositions depicted either large sensitivities but high confinement losses or low sensitivity and low losses. After an in-depth analysis of several previous works, keeping in mind their imperfections, we constructed our sensors and polarization filters with outstanding performance characteristics using Comsol Multiphysics 5.3a. We started our research by designing a typical hexagonal Photonic Crystal Fiber Sensor for milk detection showing a maximum sensitivity of 81.16% and 81.32% for camel and cow milk. We then went on to develop two different SPR-PCF sensors; a quadrature cluster SPR-PCF sensor attaining an outstanding ultra-high figure of merit (FOM) of 4230.42 RIU−1 and a Bent Core PCF-SPR sensor for broadband double peak sensing gaining maximum amplitude resolution of 1.18×10-6 RIU and a supreme wavelength resolution of 2.16×10-6 RIU. After working with sensors for an immense amount of time, we shifted our focus to other application aspects of PCFs, more specifically, polarization filters. We lastly suggested a D-structured single-polarization filter for S and U band applications. All of our designs have been optimized to achieve remarkable sensing and filtering characteristics like high sensitivity, meager losses, impressive FOM, satisfactory crosstalk and insertion loss. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Electronic Engineering, Islamic University of Technology (IUT) The Organization of Islamic Cooperation (OIC) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject PCF,SPR, POLARIZATION FILTER,RI en_US
dc.title Design and performance analysis of different photonic crystal fibers en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics