dc.identifier.citation |
[1] D. R. Thvenot, K. Toth, R. A. Durst, and G. S. Wilson, “Electrochemical biosensors: Recommended definitions and classification (Technical Report),” Pure Appl. Chem., vol. 71, no. 12, pp. 2333–2348, 1999, doi: 10.1351/pac199971122333. [2] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 2, 2021, doi: 10.1007/s00339- 020-04162-5. [3] V. Kaur and S. Singh, “A dual-channel surface plasmon resonance biosensor based on a photonic crystal fiber for multianalyte sensing,” J. Comput. Electron., vol. 18, no. 1, pp. 319–328, 2019, doi: 10.1007/s10825-019-01305-7. [4] N. Chen, X. Zhang, M. Chang, X. Lu, and J. Zhou, “Broadband Plasmonic Polarization Filter Based on Photonic Crystal Fiber with Dual-Ring Gold Layer,” Micromachines, vol. 11, no. 5, May 2020, doi: 10.3390/MI11050470. [5] M. R. Islam et al., “Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity,” Eur. Phys. J. Plus, vol. 136, no. 2, pp. 1–14, Feb. 2021, doi: 10.1140/epjp/s13360-021-01220-6. [6] H. F. Fakhruldeen and A. Z. Ghazi Zahid, “An Overview of Photonic Crystal Fiber (PCF),” no. April 2019, 2019, [Online]. Available: www.tnsroindia.org.in. [7] J. Qin, Z. Meng, J. Gao, Z. Fan, and X. Wang, “Surface plasmon enhanced polarization filter of high birefringence photonic crystal fiber with a partial core based on filled silver nanowire,” Opt. Fiber Technol., vol. 60, no. August, p. 102342, 2020, doi: 10.1016/j.yofte.2020.102342. [8] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 5, pp. 1–13, 2021, doi: 10.1007/s00339- 021-04472-2. [9] X. Yang, Y. Lu, B. Liu, and J. Yao, “Design of a Tunable Single-Polarization Photonic Crystal Fiber Filter with Silver-Coated and Liquid-Filled Air Holes,” IEEE Photonics J., vol. 9, no. 4, 2017, doi: 10.1109/JPHOT.2017.2720590. [10] Y. Gamal, B. M. Younis, S. F. Hegazy, Y. Badr, M. F. O. Hameed, and S. S. A. Obayya, “Highly efficient modified dual D-shaped PCF polarization filter,” Opt. Fiber Technol., vol. 62, no. January, p. 102459, 2021, doi: 10.1016/j.yofte.2021.102459. [11] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber 64 based refractive index sensor,” Opt. Quantum Electron., vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082-021-02748-8. [12] S. Islam et al., “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng., 2016, doi: 10.1117/1.oe.55.7.076117. [13] M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat, and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” Opt. Eng., 2017, doi: 10.1117/1.oe.56.4.043108. [14] M. R. Islam, M. A. Hossain, K. M. A. Talha, and R. K. Munia, “A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis,” Opt. Quantum Electron., 2020, doi: 10.1007/s11082-020-02532-0. [15] K. Ahmed et al., “Refractive Index-Based Blood Components Sensing in Terahertz Spectrum,” IEEE Sens. J., 2019, doi: 10.1109/JSEN.2019.2895166. [16] I. K. Yakasai, P. E. Abas, S. Ali, and F. Begum, “Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation,” Opt. Quantum Electron., vol. 51, no. 4, pp. 1–16, Apr. 2019, doi: 10.1007/s11082-019-1832-x. [17] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [18] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Goldcoated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens. Bio-Sensing Res., vol. 18, pp. 7–12, Apr. 2018, doi: 10.1016/J.SBSR.2018.02.003. [19] M. R. M. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, p. 165311, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [20] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., vol. 19, p. 103501, Dec. 2020, doi: 10.1016/j.rinp.2020.103501. [21] H. Wang, X. Yan, S. Li, and X. Zhang, “Tunable surface plasmon resonance polarization beam splitter based on dual-core photonic crystal fiber with magnetic fluid,” Opt. Quantum Electron., vol. 49, no. 11, pp. 1–10, 2017, doi: 10.1007/s11082-017-1190-5. [22] H. Huang et al., “A highly magnetic field sensitive photonic crystal fiber based on surface plasmon resonance,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–15, 2020, doi: 10.3390/s20185193. 65 [23] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra-Broadband Dual Peak Sensing,” IEEE Sens. J., vol. 22, no. 6, pp. 5628–5635, Mar. 2022, doi: 10.1109/JSEN.2022.3149715. [24] C. Liu et al., “The single-polarization filter composed of gold-coated photonic crystal fiber,” Phys. Lett. A, vol. 383, no. 25, pp. 3200–3206, Sep. 2019, doi: 10.1016/J.PHYSLETA.2019.07.012. [25] Q. Liu et al., “Broadband Single-Polarization Photonic Crystal Fiber Based on Surface Plasmon Resonance for Polarization Filter,” Plasmonics, vol. 10, no. 4, pp. 931–939, Aug. 2015, doi: 10.1007/S11468-015-9882-9. [26] M. S. Islam et al., “Experimental Study on Glass and Polymers: Determining the Optimal Material for Potential Use in Terahertz Technology,” IEEE Access, 2020, doi: 10.1109/ACCESS.2020.2996278. [27] “Silica fibers, explained by RP Photonics Encyclopedia; optical fiber, glass, fiber optics.” . [28] P. R. West, S. Ishii, G. V. Naik, N. K. Emani, V. M. Shalaev, and A. Boltasseva, “Searching for better plasmonic materials,” Laser Photon. Rev., vol. 4, no. 6, pp. 795–808, Nov. 2010, doi: 10.1002/LPOR.200900055. [29] G. V. Naik, V. M. Shalaev, and A. Boltasseva, “Alternative Plasmonic Materials: Beyond Gold and Silver,” Adv. Mater., vol. 25, no. 24, pp. 3264–3294, Jun. 2013, doi: 10.1002/ADMA.201205076. [30] S. Sharmin, A. Bosu, and S. Akter, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” 2018 Int. Conf. Adv. Electr. Electron. Eng. ICAEEE 2018, Feb. 2019, doi: 10.1109/ICAEEE.2018.8643003. [31] H. Abdullah, K. Ahmed, and S. A. Mitu, “Ultrahigh sensitivity refractive index biosensor based on gold coated nano-film photonic crystal fiber,” Results Phys., vol. 17, p. 103151, Jun. 2020, doi: 10.1016/j.rinp.2020.103151. [32] A. Dinovitser et al., “Exposed-core localized surface plasmon resonance biosensor,” vol. 36, no. 8, Aug. 2019. [33] A. Y. Pawar, D. D. Sonawane, K. B. Erande, and D. V. Derle, “Terahertz technology and its applications,” Drug Invention Today, vol. 5, no. 2. pp. 157–163, Jun. 2013, doi: 10.1016/j.dit.2013.03.009. [34] M. S. Islam, J. Sultana, A. Dinovitser, B. W. H. Ng, and D. Abbott, “A novel Zeonex based oligoporous-core photonic crystal fiber for polarization preserving terahertz applications,” Opt. Commun., 2018, doi: 10.1016/j.optcom.2017.12.061. 66 [35] M. Ahasan Habib, M. Shamim Anower, and M. Rabiul Hasan, “Highly birefringent and low effective material loss microstructure fiber for THz wave guidance,” Opt. Commun., 2018, doi: 10.1016/j.optcom.2018.04.022. [36] A. Habib, “Ultra low loss and dispersion flattened microstructure fiber for terahertz applications,” Brill. Eng., 2020, doi: 10.36937/ben.2020.003.001. [37] M. J. B. M. Leon and M. A. Kabir, “Design of a liquid sensing photonic crystal fiber with high sensitivity, bireferingence & low confinement loss,” Sens. Bio-Sensing Res., 2020, doi: 10.1016/j.sbsr.2020.100335. [38] M. S. Islam et al., “A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime,” IEEE Sens. J., 2018, doi: 10.1109/JSEN.2017.2775642. [39] A. A. Rifat, G. A. Mahdiraji, Y. M. Sua, R. Ahmed, Y. G. Shee, and F. R. M. Adikan, “Highly sensitive multi-core flat fiber surface plasmon resonance refractive index sensor,” Opt. Express, vol. 24, no. 3, p. 2485, Feb. 2016, doi: 10.1364/oe.24.002485. [40] A. A. Rifat, G. Amouzad Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Switzerland), vol. 15, no. 5, pp. 11499–11510, 2015, doi: 10.3390/s150511499. [41] M. N. Sakib et al., “High performance dual core D-shape PCF-SPR sensor modeling employing gold coat,” Results Phys., vol. 15, p. 102788, Dec. 2019, doi: 10.1016/j.rinp.2019.102788. [42] X. Yang, Y. Lu, B. Liu, and J. Yao, “Simultaneous measurement of refractive index and temperature based on SPR in D-shaped MOF,” Appl. Opt., vol. 56, no. 15, p. 4369, May 2017, doi: 10.1364/ao.56.004369. [43] M. S. M. R. M. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, pp. 1–13, Jan. 2021, doi: 10.1007/s11468-020-01355-9. [44] Y. Peng, J. Hou, Z. Huang, and Q. Lu, “Temperature sensor based on surface plasmon resonance within selectively coated photonic crystal fiber,” Appl. Opt., vol. 51, no. 26, pp. 6361–6367, Sep. 2012, doi: 10.1364/AO.51.006361. [45] N. Cennamo, F. Arcadio, A. Minardo, D. Montemurro, and L. Zeni, “Experimental characterization of plasmonic sensors based on lab-built tapered plastic optical fibers,” Appl. Sci., vol. 10, no. 12, pp. 1–13, 2020, doi: 10.3390/app10124389. [46] S. Chu et al., “Influence of the Sub-Peak of Secondary Surface Plasmon Resonance onto the Sensing Performance of a D-Shaped Photonic Crystal Fibre Sensor,” IEEE Sens. J., vol. 67 21, no. 1, pp. 33–42, Jan. 2021, doi: 10.1109/JSEN.2019.2953393. [47] P. Bing et al., “Analysis of Dual-Channel Simultaneous Detection of Photonic Crystal Fiber Sensors,” Plasmonics, vol. 15, no. 4, pp. 1071–1076, Aug. 2020, doi: 10.1007/S11468-020- 01131-9. [48] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Polish Acad. Sci. Tech. Sci., vol. 62, no. 4, pp. 667–682, 2014, doi: 10.2478/bpasts-2014- 0073. [49] P. J. A. Sazio et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science (80-. )., vol. 311, no. 5767, pp. 1583–1586, 2006, doi: 10.1126/science.1124281. [50] M. S. Islam et al., “Dual-polarized highly sensitive plasmonic sensor in the visible to nearIR spectrum,” Opt. Express, vol. 26, no. 23, p. 30347, 2018, doi: 10.1364/oe.26.030347. [51] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032– 1035, Jun. 2018, doi: 10.1109/LPT.2018.2829920. [52] X. Meng et al., “An optical-fiber sensor with double loss peaks based on surface plasmon resonance,” Optik (Stuttg)., vol. 216, Aug. 2020, doi: 10.1016/J.IJLEO.2020.164938. [53] M. S. Aruna Gandhi, K. Senthilnathan, P. R. Babu, and Q. Li, “Highly sensitive localized surface plasmon polariton based d-type twin-hole photonic crystal fiber microbiosensor: Enhanced scheme for sers reinforcement,” Sensors (Switzerland), vol. 20, no. 18, pp. 1–13, Sep. 2020, doi: 10.3390/S20185248. [54] Y. Gamal, B. M. Younis, S. F. Hegazy, Y. Badr, M. F. O. Hameed, and S. S. A. Obayya, “Highly efficient modified dual D-shaped PCF polarization filter,” Opt. Fiber Technol., vol. 62, Mar. 2021, doi: 10.1016/J.YOFTE.2021.102459. [55] B. H. Almewafy, N. F. F. Areed, M. F. O. Hameed, and S. S. A. Obayya, “Modified Dshaped SPR PCF polarization filter at telecommunication wavelengths,” Opt. Quantum Electron., vol. 51, no. 6, Jun. 2019, doi: 10.1007/S11082-019-1885-X. [56] Z. Fan et al., “Numerical Analysis of Polarization Filter Characteristics of D-Shaped Photonic Crystal Fiber Based on Surface Plasmon Resonance,” Plasmonics, vol. 10, no. 3, pp. 675–680, Jun. 2015, doi: 10.1007/S11468-014-9853-6. [57] L. Yang et al., “Design of bimetal-coated photonic crystal fiber filter based on surface plasmon resonance,” Results Opt., vol. 1, Nov. 2020, doi: 10.1016/J.RIO.2020.100027. [58] M. Li, L. Peng, G. Zhou, B. Li, Z. Hou, and C. Xia, “Design of Photonic Crystal Fiber Filter with Narrow Width and Single-Polarization Based on Surface Plasmon Resonance,” IEEE Photonics J., vol. 9, no. 3, Jun. 2017, doi: 10.1109/JPHOT.2017.2703979. 68 [59] J. Li, S. Li, S. Zhang, Y. Guo, and Y. Liu, “Broadband single-polarization filter of D-shaped photonic crystal fiber with a micro-opening based on surface plasmon resonance,” Appl. Opt. Vol. 57, Issue 27, pp. 8016-8022, vol. 57, no. 27, pp. 8016–8022, Sep. 2018, doi: 10.1364/AO.57.008016. |
en_US |