dc.identifier.citation |
[1] P. Engelhart, S. Hermann, T. Neubert, H. Plagwitz, R. Grischke, R. Meyer, et al., Laser Ablation of SiO2 for Locally Contacted Si Solar Cells With Ultra-short Pulses, Progress in Photovoltaics: Research and Applications. 15 (2007) 521–527. [2] Jostein Thorstensen, Department of Physics Faculty of Mathematics and Natural Sciences, University of Oslo, March, 2013 [3] K. Mangersnes, Back-contact back-junction silicon solar cells, University of Oslo, 2010. [4] A. Knorz, M. Peters, A. Grohe, C. Harmel, R. Preu, Selective Laser Ablation of SiNx Layers on Textured Surfaces for Low Temperature Front Side Metallizations, Progress in Photovoltaics: Research and Applications. 17 (2009) 127–136. [5] M. Ametowobla, Characterization of a Laser Doping Process for Crystalline Silicon Solar Cells, Universität Stuttgart, 2010. [6] D. Bäuerle, Laser Processing and Chemistry, 3rd ed., Springer, Berlin Heidelberg, 2000. [7] S. Huang, X. Ruan, X. Fu, H. Yang, Measurement of the thermal transport properties of dielectric thin films using the micro-Raman method, Journal of Zhejiang University SCIENCE A. 10 (2009) 7–16. [8] B. Kuo, J. Li, A. Schmid, Thermal conductivity and interface thermal resistance of Si film on Si substrate determined by photothermal displacement interferometry, Applied Physics A. 55 (1992) 289–296. [9] W.M. Haynes, ed., Physical Constants of Inorganic Compounds, in: CRC Handbook of Chemistry and Physics, 92nd ed. CRC Press/Taylor and Francis, Boca Raton, FL, 2012. [10] Y. Cerenius, Melting-Temperature Measurements on, Journal of the American Ceramic Society. 82 (1999) 380–386. [11] C.L. Yaws, Yaws’ Handbook of Thermodynamic Properties for Hydrocarbons and Chemicals, Knovel, 2009. [12] A. Jain, K.E. Goodson, Measurement of the Thermal Conductivity and Heat Capacity of Freestanding Shape Memory. Thin Films Using the 3ω Method, Journal of Heat Transfer. 130 (2008) 102402. [13] C.K. Ong, H.S. Tan, E.H. Sin, Calculations of Melting Threshold energies of crystalline and amorphous materials due to pulsed-laser irradiation, Materials Science and Engineering. 76 (1986) 79 – 85. [14] H. Kobatake, H. Fukuyama, I. Minato, T. Tsukada, S. Awaji, Noncontact measurement of 64 thermal conductivity of liquid silicon in a static magnetic field, Applied Physics Letters. 90 (2007) 094102. [15] D.K. Schroder, R.N. Thomas, J.C. Swartz, Free Carrier Absorption in Silicon, IEEE Transactions on Electron Devices. 25 (1978) 254–261. [16] J. Nelson, the Physics of Solar Cells, Imperial College Press, UK, 2003. [17] E.H. Sin, C.K. Ong, H.S. Tan, Temperature Dependence of Interband Optical Absorption of Silicon at 1152, 1064, 750 and 694 nm, Physica Status Solidi (a). 199 (1984) 199–204. [18] N.D. Arora, J.R. Hauser, D.J. Roulston, Electron and Hole Mobilities in Silicon as a Function of Concentration and Temperature, IEEE Transactions on Electron Devices. ED-29 (1982) 292–295. [19] P. Campbell, S. R. Wenham, and M. A. Green, “Light trapping and reflection control with tilted pyramids and grooves,” in Conference Proceedings of the 20th IEEE Photovoltaic Specialists Conference, 1988, pp. 713–716. [20] P. Campbell and M. A. Green, “High performance light trapping textures for monocrystalline silicon solar cells,” Solar Energy Materials and Solar Cells, vol. 65, no.1–4, pp. 369–375, Jan. 2001. [21] E. Hecht, Optics, 4th ed. San Francisco, CA: Addison Wesley, 2002. BIBLIOGRAPHYJ. Gjessing, E. S. Marstein, and A. Sudbø, “2D back-side diffraction grating for improved light trapping in thin silicon solar cells,” Optics express, vol. 18, no. 6, pp. 5481–5495, Mar. 2010. [22] J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” Journal of Applied Physics, vol. 110, no.3, p. 033104, Aug. 2011. [23] J. Gjessing, A. S. Sudbø, and E. S. Marstein, “A novel back-side light-trapping structure for thin silicon solar cells,” Journal of the European Optical Society: Rapid Publications, vol. 6, p. 11020, 2011. [24] S. H. Zaidi, J. M. Gee, and D. S. Ruby, “Diffraction grating structures in solar cells,” in Proceedings of the 28th IEEE Photovoltaic Specialists Conference, 2000, pp. 395–398. [25] H. Hauser, A. Mellor, A. Guttowski, C. Wellens, J. Benick, C. Müller, M. Hermle, and B. Bläsi, “Diffractive Backside Structures via Nanoimprint Lithography,” Energy Procedia, vol. 27, no. 2011, pp. 337–342, 2012. 65 [26] B. Bläsi, H. Hauser, O. Höhn, V. Kübler, M. Peters, and A. Wolf, “Photon Management Structures Originated by Interference Lithography,” Energy Procedia, vol. 8, pp. 712–718, Jan. 2011. [27] E. Haugan, H. Granlund, J. Gjessing, and E. S. Marstein, “Colloidal crystals as templates for light harvesting structures in solar cells,” Energy Procedia, vol. 10, pp. 292–296, 2011. [28] K. Piglmayer, R. Denk, and D. Bäuerle, “Laser-induced surface patterning by means of microspheres,” Applied Physics Letters, vol. 80, no. 25, pp. 4693–4695, 2002. [29] A. Barhdadi and J. C. Muller, “Electrically Active Defects in Silicon after various Optical Thermal Processing,” Rev. Energ. Ren., vol. 3, pp. 29–38, 2000. [30] E. M. Lawson and S. J. Pearton, “Hydrogen passivation of laser-induced acceptor defects in p-type silicon,” Physica Status Solidi (a), vol. 72, pp. 55–58, 1982. [31] J. L. Benton, C. J. Doherty, S. D. Ferris, D. L. Flamm, L. C. Kimerling, and H. J. Leamy, “Hydrogen passivation of point defects in silicon,” Applied Physics Letters, vol. 36, no. 8, 1. p. 670, 1980. |
en_US |