dc.identifier.citation |
[1] Haque, S. A., & Islam, M. A. (2021). Artificial Neural Network-Based Short-Term Load Forecasting for Mymensingh Area of Bangladesh. International Journal of Electrical and Computer Engineering, 15(3), 99-103. [2] Islam, A., Hasib, S. R., & Islam, M. S. (2013). Short term electricity demand forecasting for an isolated area using two different approaches. Journal of Power Technologies, 93(4), 185-193. [3] HASAN, T. M., ISLAM, S. S., HRIDOY, M. A. K., PARVEZ, H., SHARIF-ALAMIN, M. D., CHOWDHURY, N. H., ... & DHAKA, B. (2020). Demand side management of electricity for controlling peak demand in bangladesh. [4] Paparoditis, E., & Sapatinas, T. (2013). Short-term load forecasting: The similar shape functional time-series predictor. IEEE Transactions on power systems, 28(4), 3818-3825. [5] Yu, Z. (1996). A temperature match based optimization method for daily load prediction considering DLC effect. IEEE Transactions on Power Systems, 11(2), 728- 733. [6] Sadownik, R., & Barbosa, E. P. (1999). Short‐term forecasting of industrial electricity consumption in Brazil. Journal of Forecasting, 18(3), 215-224. [7] Al Amin, M. A., & Hoque, M. A. (2019, March). Comparison of ARIMA and SVM for Short-term Load Forecasting. In 2019 9th annual information technology, electromechanical engineering and microelectronics conference (IEMECON) (pp. 1- 6). IEEE. [8] Grimaccia, F., Mussetta, M., & Zich, R. E. (2012, June). Advanced predictive models towards PV energy integration in smart grid. In 2012 IEEE International Conference on Fuzzy Systems (pp. 1-6). IEEE. [9] Bunn, D. W. (2000). Forecasting loads and prices in competitive power markets. Proceedings of the IEEE, 88(2), 163-169. [10] Hipel, K. W., & McLeod, A. I. (1994). Time series modelling of water resources and environmental systems. Elsevier. [11] Kardakos, E. G., Alexiadis, M. C., Vagropoulos, S. I., Simoglou, C. K., Biskas, P. N., & Bakirtzis, A. G. (2013, September). Application of time series and artificial neural network models in short-term forecasting of PV power generation. In 2013 48th International Universities' Power Engineering Conference (UPEC) (pp. 1-6). IEEE. [12] Nie, H., Liu, G., Liu, X., & Wang, Y. (2012). Hybrid of ARIMA and SVMs for short-term load forecasting. Energy Procedia, 16, 1455-1460. [13] Karthika, S., Margaret, V., & Balaraman, K. (2017, April). Hybrid short term load forecasting using ARIMA-SVM. In 2017 Innovations in Power and Advanced Computing Technologies (i-PACT) (pp. 1-7). IEEE. [14] Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE transactions on pattern analysis and machine intelligence, 35(8), 1798-1828. [15] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780. [16] Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. Advances in neural information processing systems, 27. 34 [17] Vinyals, O., Toshev, A., Bengio, S., & Erhan, D. (2015). Show and tell: A neural image caption generator. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3156-3164). [18] Karpathy, A., & Fei-Fei, L. (2015). Deep visual-semantic alignments for generating image descriptions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3128-3137). [19] Mao, J., Xu, W., Yang, Y., Wang, J., Huang, Z., & Yuille, A. (2014). Deep captioning with multimodal recurrent neural networks (m-rnn). arXiv preprint arXiv:1412.6632. [20] Al Amin, M. A., & Hoque, M. A. (2019, March). Comparison of ARIMA and SVM for Short-term Load Forecasting. In 2019 9th annual information technology, electromechanical engineering and microelectronics conference (IEMECON) (pp. 1- 6). IEEE. [21] World Weather Online - https://www.worldweatheronline.com/ [22] Zia, T., & Zahid, U. (2019). Long short-term memory recurrent neural network architectures for Urdu acoustic modeling. International Journal of Speech Technology, 22(1), 21-30. |
en_US |