dc.identifier.citation |
[1] A. Gupta and R. K. Jha, ”A Survey of 5G Network: Architecture and Emerging Technologies,” in IEEE Access, vol. 3, pp. 1206-1232, 2015, doi: 10.1109/ACCESS.2015.2461602. [2] S. Sun, T. S. Rappaport, M. Shafi, P. Tang, J. Zhang and P. J. Smith, ”Propagation Models and Performance Evaluation for 5G MillimeterWave Bands,” in IEEE Transactions on Vehicular Technology, vol. 67, no. 9, pp. 8422-8439, Sept. 2018, doi: 10.1109/TVT.2018.2848208. [3] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios and J. Zhang, ”Overview of Millimeter Wave Communications for FifthGeneration (5G) Wireless Networks—With a Focus on Propagation Models,” in IEEE Transactions on Antennas and Propagation, vol. 65, no. 12, pp. 6213-6230, Dec. 2017, doi: 10.1109/TAP.2017.2734243. [4] G. R. Maccartney, T. S. Rappaport, S. Sun and S. Deng, ”Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz for Ultra-Dense 5G Wireless Networks,” in IEEE Access, vol. 3, pp. 2388-2424, 2015, doi: 10.1109/ACCESS.2015.2486778. [21] L. N. Huynh, Q.-V. Pham, X.-Q. Pham, T. D. Nguyen, M. D. Hossain, and E.-N. Huh, “Efficient computation offloading in multi-tier multi-access edge computing systems: A particle swarm optimization approach,” Applied Sciences, vol. 10, no. 1, p. 203, Jan. 2020. [5] Mohammed Bahjat Majed, Tharek Abd Rahman, Omar Abdul Aziz, Mohammad Nour Hindia, Effariza Hanafi, ”Channel Characterization and Path Loss Modeling in Indoor Environment at 4.5, 28, and 38 GHz for 5G Cellular Networks”, International Journal of Antennas and Propagation, vol. 2018, Article ID 9142367, 14 pages, 2018. https://doi.org/10.1155/2018/9142367 [6] I. Rodriguez et al., ”Analysis of 38 GHz mmWave Propagation Characteristics of Urban Scenarios,” Proceedings of European Wireless 2015; 21th European Wireless Conference, Budapest, Hungary, 2015, pp. 1-8. 80 [7] Zhimeng Zhong, Jianyao Zhao, Chao Li, ”Outdoor-to-Indoor Channel Measurement and Coverage Analysis for 5G Typical Spectrums”, International Journal of Antennas and Propagation, vol. 2019, Article ID 3981678, 10 pages, 2019. https://doi.org/10.1155/2019/3981678 [8] G. Zhang et al., ”Experimental Characterization of Millimeter-Wave Indoor Propagation Channels at 28 GHz,” in IEEE Access, vol. 6, pp. 76516-76526, 2018, doi: 10.1109/ACCESS.2018.2882644. [9] T. Imai, K. Kitao, N. Tran, N. Omaki, Y. Okumura and K. Nishimori, ”Outdoor-to-Indoor path loss modeling for 0.8 to 37 GHz band,” 2016 10th European Conference on Antennas and Propagation (EuCAP), Davos, Switzerland, 2016, pp. 1-4, doi: 10.1109/EuCAP.2016.7481469. [10] Y. Mizuno, K. Nishimori and R. Taniguchi, ”A study on outdoor to indoor penetration loss characteristics considering vertical and horizontal incident angle at 5 GHz band,” 2020 International Symposium on Antennas and Propagation (ISAP), 2021, pp. 535-536, doi: 10.23919/ISAP47053.2021.9391303. [11] Mizuno, Yuta & Nishimori, Kentaro & Taniguchi, Ryotaro & Igarashi, Yuki. (2021). A simple model of outdoor to indoor penetration path loss considering incident angles at 0.9, 2.3 and 5.1 GHz. IEICE Communications Express. 10. 10.1587/comex.2020XBL0189. [12] M. M. Lodro, N. Majeed, A. A. Khuwaja, A. H. Sodhro and S. Greedy, ”Statistical channel modelling of 5G mmWave MIMO wireless communication,” 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2018, pp. 1-5, doi: 10.1109/ICOMET.2018.8346408. [13] T. Anggita and M. Suryanegara, ”Outdoor to Indoor Propagation Model of Glass Material Building at 26 GHz for 5G Mobile Technology,” 2020 8th International Conference on Information and Communication Technology (ICoICT), Yogyakarta, Indonesia, 2020, pp. 1-5, doi: 10.1109/ICoICT49345.2020.9166323. 81 [14] A. B. Zekri, R. Ajgou, A. Chemsa and S. Ghendir, ”Analysis of Outdoor to Indoor Penetration Loss for mmWave Channels,” 020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP), El Oued, Algeria, 2020, pp. 74-79, doi: 10.1109/CCSSP49278.2020.9151659. [15] S. Ju, Y. Xing, O. Kanhere and T. S. Rappaport, ”3-D Statistical Indoor Channel Model for Millimeter-Wave and Sub-Terahertz Bands,” GLOBECOM 2020 - 2020 IEEE Global Communications Conference, Taipei, Taiwan, 2020, pp. 1-7, doi: 10.1109/GLOBECOM42002.2020.9322429. [16] K. Haneda, J. Zhang, L. Tian et al., “5G 3GPP-Like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments,” 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, 2016, pp. 1-7. doi: 10.1109/VTCSpring.2016.7503971 [17] H. Zhao, R. Mayzus, S. Sun et al., “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and Around Buildings in New York City,” 2013 IEEE International Conference on Communications (ICC), Budapest, 2013, pp. 5163-5167. doi: 10.1109/ICC.2013.6655403 [18] 3GPP,“Study on channel model for frequencies from 0.5 to 100 GHz” TR 38.901,Mar.2017. [19] K. Haneda et al., ”5G 3GPP-Like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments,” 2016 IEEE 83rd Vehicular Technology Conference (VTC Spring), Nanjing, China, 2016, pp. 1-7, doi: 10.1109/VTCSpring.2016.7503971 [20] H. J. Liebe, G. A. Hufford, and M. G. Cotton, “Propagation modeling of moist air and suspended water/ice particles at frequencies below 1000 GHz,” AGARD Conference Proceedings542,May1993.[Online].Available:http://www.its.bldrdoc.gov/publications/2670.aspx. 82 [21] A. Ali, K. Naguib, and K. Mahmoud, “Optimized resource and power allocation for sum rate maximization in D2D-assisted caching networks,” in International Conference on Computer Engineering and Systems (ICCES), Cairo, Egypt, 2019, pp. 438–444 [22] Q.-V. Pham, S. Mirjalili, N. Kumar, M. Alazab, and W.-J. Hwang, “Whale optimization algorithm with applications to resource allocation in wireless networks,” IEEE Transactions on Vehicular Technology, vol. 69, no. 4, pp. 4285–4297, Apr. 2020. [23] G. Eappen and S. T., “Hybrid PSO-GSA for energy efficient spectrum sensing in cognitive radio network,” Physical Communication, vol. 40, p. 101091, Jun. 2020. [24] Pham, Quoc-Viet, et al. "Whale optimization algorithm with applications to resource allocation in wireless networks." IEEE Transactions on Vehicular Technology 69.4 (2020): 4285-4297. [25] J. Kennedy and R. Eberhart, "Particle swarm optimization," Proceedings of ICNN'95 - International Conference on Neural Networks, 1995, pp. 1942-1948 vol.4, doi: 10.1109/ICNN.1995.488968. [26] Seyedali Mirjalili, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowledge-Based Systems, Volume 89, 2015, Pages 228-249, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.07.006. [27] Seyedali Mirjalili, Andrew Lewis, The Whale Optimization Algorithm, Advances in Engineering Software, Volume 95, 2016, Pages 51-67, ISSN 0965-9978, [28] Seyedali Mirjalili, Seyed Mohammad Mirjalili, Andrew Lewis, Grey Wolf Optimizer, Advances in Engineering Software, Volume 69, 2014, Pages 46-61, ISSN 0965-9978, [29] Ali Asghar Heidari, Seyedali Mirjalili, Hossam Faris, Ibrahim Aljarah, Majdi Mafarja, Huiling Chen, Harris hawks optimization: Algorithm and applications, Future Generation Computer Systems, Volume 97, 2019, Pages 849-872, ISSN 0167-739X [30] Seyedali Mirjalili, Amir H. Gandomi, Seyedeh Zahra Mirjalili, Shahrzad Saremi, Hossam Faris, Seyed Mohammad Mirjalili, Salp Swarm Algorithm: A bio-inspired optimizer for engineering design problems, Advances in Engineering Software, Volume 114, 2017, Pages 163-191, ISSN 0965-9978, https://doi.org/10.1016/j.advengsoft.2017.07.002. [31] Seyedali Mirjalili, SCA: A Sine Cosine Algorithm for solving optimization problems, Knowledge-Based Systems, Volume 96, 2016, Pages 120-133, ISSN 0950-7051, https://doi.org/10.1016/j.knosys.2015.12.022. 83 [32] Mirjalili, S. Dragonfly algorithm: a new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems. Neural Comput & Applic 27, 1053–1073 (2016). https://doi.org/10.1007/s00521-015-1920-1 [33] S. Saremi, S. Mirjalili and A. Lewis, "Grasshopper optimisation algorithm: Theory and application", Adv. Eng. Softw., vol. 105, pp. 30-47, Mar. 2017. [34] T. S. Rappaport, G. R. MacCartney, M. K. Samimi and S. Sun, "Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design," in IEEE Transactions on Communications, vol. 63, no. 9, pp. 3029-3056, Sept. 2015, doi: 10.1109/TCOMM.2015.2434384. [35]S. Sun et al., "Investigation of Prediction Accuracy, Sensitivity, and Parameter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless Communications," in IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843-2860, May 2016, doi: 10.1109/TVT.2016.2543139. [36] T. S. Rappaport, R. W. Heath, Jr., R. C. Daniels, and J. N. Murdock, MillimeterWaveWireless Communications. Pearson/Prentice Hall 2015. |
en_US |