| Login
dc.contributor.author | Khan, Md. Habibur Rahman Bejoy | |
dc.date.accessioned | 2023-11-25T05:57:09Z | |
dc.date.available | 2023-11-25T05:57:09Z | |
dc.date.issued | 2023-05-30 | |
dc.identifier.citation | A. Sychev, V. Isak, Iron compounds and the mechanisms of the homogeneous catalysis of the activation of O2 and H2O2 and of the oxidation of organic substrates, Russian Chem. Rev. 65 (1995) 1105–1129. Acra, A., Karahagopian, Y., and Raffoul, Z. (1984). Solar Disinfection of Drinking Water and Oral Rehydration Solutions. 56. https://www.ircwash.org/sites/default/files/254.1-2847.pdf Al-Gheethi, A. A. S., Norli, I., and Kadir, M. O. A. (2013). Elimination of enteric indicators and pathogenic bacteria in secondary effluents and lake water by solar disinfection (SODIS). Journal of Water Reuse and Desalination, 3(1), 39–46. https://doi.org/10.2166/wrd.2013.060 Alrousan, D. M. A., Polo-López, M. I., Dunlop, P. S. M., Fernández-Ibáñez, P., and Byrne, J. A. (2012). Solar photocatalytic disinfection of water with immobilised titanium dioxide in re circulating flow CPC reactors. Applied Catalysis B: Environmental, 128, 126–134. https://doi.org/10.1016/j.apcatb.2012.07.038 Amin, M. T., and Han, M. Y. (2011). Improvement of solar based rainwater disinfection by using lemon and vinegar as catalysts. Desalination, 276(1–3), 416–424. https://doi.org/10.1016/j.desal.2011.03.076 Amirsoleimani, A., and Brion, G. M. (2021). Solar disinfection of turbid hygiene waters in Lexington, KY, USA. Journal of Water and Health, 19(4), 642–656. https://doi.org/10.2166/WH.2021.003 Ananthaswamy, H. N., and Eisenstark, A. (1976). Near‐Uv‐Induced Breaks in Phage Dna: Sensitization By Hydrogen Peroxide (a Tryptophan Photoproduct). Photochemistry and Photobiology, 24(5), 439–442. https://doi.org/10.1111/j.1751-1097.1976.tb06851.x Ananthaswamy, H. N., Hartman, P. S., and Eisenstark, A. (1979). Synergistic Lethality of Phage T7 By Near‐Uv Radiation and Hydrogen Peroxide: an Action Spectrum. Photochemistry and Photobiology, 29(1), 53–56. https://doi.org/10.1111/j.1751-1097.1979.tb09259.x Arnold, B., Arana, B., Mäusezahl, D., Hubbard, A., and Colford, J. M. (2009). Evaluation of a pre existing, 3-year household water treatment and handwashing intervention in rural Guatemala. International Journal of Epidemiology, 38(6), 1651–1661. https://doi.org/10.1093/ije/dyp241 Asiimwe, J. K., Quilty, B., Muyanja, C. K., and McGuigan, K. G. (2013). Field comparison of solar water disinfection (SODIS) efficacy between glass and polyethylene terephalate (PET) plastic bottles under sub-Saharan weather conditions. Journal of Water and Health, 11(4), 729–737. https://doi.org/10.2166/wh.2013.197 Azamzam, A. A., Rafatullah, M., Yahya, E. B., Ahmad, M. I., Lalung, J., Alharthi, S., Alosaimi, A. M., and Hussein, M. A. (2021). Insights into solar disinfection enhancements for drinking water treatment applications. Sustainability (Switzerland), 13(19), 10570. https://doi.org/10.3390/su131910570 Bain, R., Cronk, R., Hossain, R., Bonjour, S., Onda, K., Wright, J., Yang, H., Slaymaker, T., Hunter, P., Prüss-Ustün, A., and Bartram, J. (2014). Global assessment of exposure to faecal contamination through drinking water based on a systematic review. Tropical Medicine and International Health, 19(8), 917–927. https://doi.org/10.1111/TMI.12334 Barron, J. J., & Ashton, C. (2005). The effect of temperature on conductivity measurement. TSP, 7(3), 1-5. 139 | P a g e Berney, M., Weilenmann, H. U., and Egli, T. (2006). Flow-cytometric study of vital cellular functions in Escherichia coli during solar disinfection (SODIS). Microbiology, 152(6), 1719– 1729. https://doi.org/10.1099/mic.0.28617-0 Berney, M., Weilenmann, H. U., Simonetti, A., and Egli, T. (2006). Efficacy of solar disinfection of Escherichia coli, Shigella flexneri, Salmonella Typhimurium and Vibrio cholerae. Journal of Applied Microbiology, 101(4), 828–836. https://doi.org/10.1111/J.1365-2672.2006.02983.X Bitew, B. D., Gete, Y. K., Biks, G. A., and Adafrie, T. T. (2018). The effect of SODIS water treatment intervention at the household level in reducing diarrheal incidence among children under 5 years of age: A cluster randomized controlled trial in Dabat district, northwest Ethiopia. Trials, 19(1), 1–15. https://doi.org/10.1186/s13063-018-2797-y Bholay, A. D., and Nalawade, P. M. (2017). SODIS: A potent technology for sustainable drinking water management in tropics. Research Journal of Recent Sciences, 6(6), 29–34. https://www.researchgate.net/publication/317548953 Bosshard, F., Berney, M., Scheifele, M., Weilenmann, H. U., and Egli, T. (2009). Solar disinfection (SODIS) and subsequent dark storage of Salmonella typhimurium and Shigella flexneri monitored by flow cytometry. Microbiology, 155(4), 1310–1317. https://doi.org/10.1099/mic.0.024794-0 Bosshard, F., Bucheli, M., Meur, Y., and Egli, T. (2010). The respiratory chain is the cell’s Achilles’ heel during UVA inactivation in Escherichia coli. Microbiology, 156(7), 2006–2015. https://doi.org/10.1099/mic.0.038471-0 Bosshard, F., Riedel, K., Schneider, T., Geiser, C., Bucheli, M., and Egli, T. (2010). Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environmental Microbiology, 12(11), 2931–2945. https://doi.org/10.1111/j.1462-2920.2010.02268.x Boyle, M., Sichel, C., Fernández-Ibáñez, P., Arias-Quiroz, G. B., Iriarte-Puña, M., Mercado, A., Ubomba-Jaswa, E., and McGuigan, K. G. (2008). Bactericidal effect of solar water disinfection under real sunlight conditions. Applied and Environmental Microbiology, 74(10), 2997–3001. https://doi.org/10.1128/AEM.02415-07/ASSET/7C9483E3-02DC-4254- 892C-43C1548E4354/ASSETS/GRAPHIC/ZAM0100888640001.JPEG Brockliss, S., Luwe, K., Ferrero, G., and Morse, T. (2022). Assessment of the 20L SODIS bucket household water treatment technology under field conditions in rural Malawi. International Journal of Hygiene and Environmental Health, 240(July 2021), 113913. https://doi.org/10.1016/j.ijheh.2021.113913 Cadenas, E., and Davies, K. J. A. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology and Medicine, 29(3–4), 222–230. https://doi.org/10.1016/S0891- 5849(00)00317-8 Cano Ssemakalu, C., Ubomba-Jaswa, E., Mamotswere Motaung, K. S. C., and Pillay, M. (2020). Solar inactivated Vibrio cholerae induces maturation of JAWS II dendritic cell line in vitro. Journal of Water and Health, 18(4), 494–504. https://doi.org/10.2166/WH.2020.040 Carratalà, A., Calado, A. D., Mattle, M. J., Meierhofer, R., Luzi, S., and Kohn, T. (2016). Solar disinfection of viruses in polyethylene terephthalate bottles. Applied and Environmental Microbiology, 82(1), 279–288. https://doi.org/10.1128/AEM.02897-15 Caslake, L. F., Connolly, D. J., Menon, V., Duncanson, C. M., Rojas, R., and Tavakoli, J. (2004). Disinfection of Contaminated Water by Using Solar Irradiation. Applied and Environmental Microbiology, 70(2), 1145–1150. https://doi.org/10.1128/AEM.70.2.1145- 140 | P a g e 1150.2004/ASSET/8ED77C58-F902-4229-8C6B 58B200A16EFB/ASSETS/GRAPHIC/ZAM0020413990005.JPEG Castro-Alférez, M., Inmaculada Polo-López, M., Marugán, J., and Fernández-Ibáñez, P. (2018). Validation of a solar-thermal water disinfection model for Escherichia coli inactivation in pilot scale solar reactors and real conditions. Chemical Engineering Journal, 331, 831–840. https://doi.org/10.1016/j.cej.2017.09.015 Castro-Alférez, M., Polo-López, M. I., Marugán, J., and Fernández-Ibáñez, P. (2017). Mechanistic modeling of UV and mild-heat synergistic effect on solar water disinfection. Chemical Engineering Journal, 316, 111–120. https://doi.org/10.1016/j.cej.2017.01.026 Chapra, S. C. (2008). Surface water-quality modeling. Waveland press. Charles, K. J., Ong, L. A., Achi, N. el, Ahmed, K. M., and Khan, M. R. (2021). Bangladesh MICS 2019: Water Quality Thematic Report. 110. https://psb.gov.bd/policies/wqtr2019.pdf Chatterjee, S., and Hadi, A. S. (2006). Regression analysis by example. John Wiley \and Sons. Chaúque, B. J. M., and Rott, M. B. (2021). Solar disinfection (SODIS) technologies as alternative for large-scale public drinking water supply: Advances and challenges. Chemosphere, 281, 130754. https://doi.org/10.1016/j.chemosphere.2021.130754 Chaúque, B. J. M., Chicumbe, C. M., Cossa, V. C., and Rott, M. B. (2021). Spatial arrangement of well and latrine and their influence on water quality in clayey soil – a study in low-income peri-urban neighborhoods in Lichinga, Mozambique. Journal of Water, Sanitation and Hygiene for Development, 11(2), 241–254. https://doi.org/10.2166/WASHDEV.2021.137 Chidya, R. C. G., Munthali, A. K., Chitedze, I., and Chitawo, M. L. (2021). Design and efficacy of solar disinfection system for improved rural household water treatment. Journal of Sustainable Development of Energy, Water and Environment Systems, 9(4). https://doi.org/10.13044/j.sdewes.d8.0369 Chihomvu, P. (2019). Investigating the intracellular growth, cytotoxicity and apoptotic effects of solar irradiated Campylobacter jejuni in a murine macrophage cell line (RAW 264.7). 2. https://doi.org/10.17632/2VWX9BC9B2.2 Chihomvu, P., Ssemakalu, C. C., Ubomba-Jaswa, E., and Pillay, M. (2021). Investigating the intracellular growth, cytotoxicity, and apoptotic effects of solar irradiated Campylobacter jejuni in a murine macrophage cell line (RAW 264.7). Journal of Biotech Research, 12, 52– 64. https://doi.org/10.17632/2VWX9BC9B2.2 Clarizia, L., Russo, D., di Somma, I., Marotta, R., and Andreozzi, R. (2017). Homogeneous photo Fenton processes at near neutral pH: A review. Applied Catalysis B: Environmental, 209, 358–371. https://doi.org/10.1016/J.APCATB.2017.03.011 Clasen, T. (2008). Scaling Up Household Water Treatment: Looking Back , Seeing Forward. Public Health and the Environment, World Health Organization, Geneva. Clasen, T., Roberts, I., Rabie, T., and Cairncross, S. (2004). Interventions to improve water quality for preventing diarrhoea. Cochrane Database of Systematic Reviews, 2. https://doi.org/10.1002/14651858.cd004794 Conroy, R. M., Elmore Meegan, M., Joyce, T., McGuigan, K., and Barnes, J. (1999). Solar disinfection of water reduces diarrhoeal disease: An update. Archives of Disease in Childhood, 81(4), 337–338. https://doi.org/10.1136/adc.81.4.337 Conroy, R. M., Elmore-Meegan, M., Joyce, T., McGuigan, K. G., and Barnes, J. (1996). Solar disinfection of drinking water and diarrhoea in Maasai children: a controlled field trial. The Lancet, 348(9043), 1695–1697. https://doi.org/10.1016/S0140-6736(96)02309-4 141 | P a g e Conroy, R. M., Meegan, M. E., Joyce, T., McGuigan, K., and Barnes, J. (2001). Solar disinfection of drinking water protects against cholera in children under 6 years of age. Archives of Disease in Childhood, 85(4), 293–295. https://doi.org/10.1136/ADC.85.4.293 Cowie, B. E., Porley, V., and Robertson, N. (2020). Solar Disinfection (SODIS) Provides a Much Underexploited Opportunity for Researchers in Photocatalytic Water Treatment (PWT). ACS Catalysis, 10(20), 11779–11782. https://doi.org/10.1021/acscatal.0c03325 de Oliveira Filho, A. A., and Lima Neto, I. E. (2017). Modelagem da qualidade da água do rio Poti em Teresina (PI). Engenharia Sanitaria e Ambiental, 23(1), 3–14. https://doi.org/10.1590/S1413-41522017142354 du Preez, M., Conroy, R. M., Ligondo, S., Hennessy, J., Elmore-Meegan, M., Soita, A., and McGuigan, K. G. (2011). Randomized intervention study of solar disinfection of drinking water in the prevention of dysentery in Kenyan children aged under 5 years. Environmental Science and Technology, 45(21), 9315–9323. https://doi.org/10.1021/es2018835 du Preez, M., McGuigan, K. G., and Conroy, R. M. (2010). Solar disinfection of drinking water in the prevention of dysentery in South African children aged under 5 years: The role of participant motivation. Environmental Science and Technology, 44(22), 8744–8749. https://doi.org/10.1021/es103328j Duarte, I., Rotter, A., Malvestiti, A., and Silva, M. (2009). The role of glass as a barrier against the transmission of ultraviolet radiation: An experimental study. Photodermatology Photoimmunology and Photomedicine, 25(4), 181–184. https://doi.org/10.1111/j.1600- 0781.2009.00434.x Eleren, S. C., Alkan, U., & Teksoy, A. (2014). Inactivation of E. Coli and B. Subtilis by solar and solar/H2O2 processes in humic surface waters. Fresen. Environ. Bull, 23, 1397-1406. El-Seesy, I. E., Kamel, M., Khattab, N., and Hassan, S. A. (2016). Solar Disinfection of Drinking Water with Polyethylene Terephthalate Bottles Coated with Nano-Titanium Dioxide. International Journal of Advanced Engineering Research and Science (IJAERS), 3(7), 2456– 1908. www.ijaers.com Environmental Conservation Rule (2023), Bangladesh Gazette, Ministry of Environment and Forest, Government of the People’s Republic of Bangladesh. F. Haber, J. Weiss, The catalytic decomposition ofhydrogen peroxide by iron salts, Proc. R. Soc. Lond. Ser. A 147 (861) (1934) 332–351. Feachem, R., Bradley, D., Garelick, H., and Mara, D. (1983). Sanitation and disease: health aspects of excreta and wastewater management. https://www.cabdirect.org/cabdirect/abstract/19852018217 Fernàndez-Ibañez, P., McGuigan, K. G., and Fatta-Kassinos, D. (2017). Can solar water-treatment really help in the fight against water shortages? Europhysics News, 48(3), 26–30. https://doi.org/10.1051/epn/2017304 Feuerstein, O., Moreinos, D., and Steinberg, D. (2006). Synergic antibacterial effect between visible light and hydrogen peroxide on Streptococcus mutans. Journal of Antimicrobial Chemotherapy, 57(5), 872–876. https://doi.org/10.1093/JAC/DKL070 Figueredo-Fernández, M., Gutiérrez-Alfaro, S., Acevedo-Merino, A., and Manzano, M. A. (2017). Estimating lethal dose of solar radiation for enterococcus inactivation through radiation reaching the water layer. Application to Solar Water Disinfection (SODIS). Solar Energy, 158, 303–310. https://doi.org/10.1016/J.SOLENER.2017.09.006 Fisher, M. B., and Nelson, K. L. (2014). Inactivation of Escherichia coli by polychromatic simulated sunlight: Evidence for and implications of a fenton mechanism involving iron, hydrogen 142 | P a g e peroxide, and superoxide. Applied and Environmental Microbiology, 80(3), 935–942. https://doi.org/10.1128/AEM.02419-13 Fisher, M. B., Iriarte, M., and Nelson, K. L. (2012). Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: Effects of additives and alternative container materials. Water Research, 46(6), 1745–1754. https://doi.org/10.1016/j.watres.2011.12.048 Fisher, M. B., Keenan, C. R., Nelson, K. L., and Voelker, B. M. (2008). Speeding up solar disinfection (SODIS): Effects of hydrogen peroxide, temperature, pH, and copper plus ascorbate on the photoinactivation of E. coli. Journal of Water and Health, 6(1), 35–51. https://doi.org/10.2166/wh.2007.005 Fisher, M. 2004 Speeding up Solar Disinfection: Effects of Hydrogen Peroxide, Temperature, and Copper plus Ascorbate on the Photoinactivation of E. coli in Charles River Water. Massachusetts Institute of Technology, Cambridge, MA, USA. Fjendbo Jørgensen, A. J., Nøhr, K., Sørensen, H., and Boisen, F. (1998). Decontamination of drinking water by direct heating in solar panels. Journal of Applied Microbiology, 85(3), 441–447. https://doi.org/10.1046/j.1365-2672.1998.853497.x Fraga, R. F., Rocha, S. M. G., and Lima Neto, I. E. (2020). Impact of flow conditions on coliform dynamics in an urban lake in the Brazilian semiarid. Https://Doi.Org/10.1080/1573062X.2020.1734948, 17(1), 43–53. https://doi.org/10.1080/1573062X.2020.1734948 García-Fernández, I., Miralles-Cuevas, S., Oller, I., Malato, S., Fernández-Ibáñez, P., and Polo López, M. I. (2019). Inactivation of E. coli and E. faecalis by solar photo-Fenton with EDDS complex at neutral pH in municipal wastewater effluents. Journal of Hazardous Materials, 85–93. https://doi.org/10.1016/j.jhazmat.2018.07.037 García-Fernández, I., Polo-López, M. I., Oller, I., and Fernández-Ibáñez, P. (2012). Bacteria and fungi inactivation using Fe3+/sunlight, H2O2 /sunlight and near neutral photo-Fenton: A comparative study. Applied Catalysis B: Environmental, 121–122, 20–29. https://doi.org/10.1016/J.APCATB.2012.03.012 García-Gil, Á., García-Muñoz, R. A., McGuigan, K. G., and Marugán, J. (2021). Solar water disinfection to produce safe drinking water. A review of parameters, enhancements, and modelling approaches to make SODIS faster and safer. Molecules, 26(11), 1–27. https://doi.org/10.3390/molecules26113431 Geeraerd, A. H., Valdramidis, V. P., and van Impe, J. F. (2005). GInaFiT, a freeware tool to assess non-log-linear microbial survivor curves. International Journal of Food Microbiology, 102(1), 95–105. https://doi.org/10.1016/J.IJFOODMICRO.2004.11.038 Gelover, S., Gómez, L. A., Reyes, K., and Teresa Leal, M. (2006). A practical demonstration of water disinfection using TiO2 films and sunlight. Water Research, 40(17), 3274–3280. https://doi.org/10.1016/j.watres.2006.07.006 Giannakis, S., Darakas, E., Escalas-Cañellas, A., and Pulgarin, C. (2014). Elucidating bacterial regrowth: Effect of disinfection conditions in dark storage of solar treated secondary effluent. Journal of Photochemistry and Photobiology A: Chemistry, 290(1), 43–53. https://doi.org/10.1016/j.jphotochem.2014.05.016 Giannakis, S., Darakas, E., Escalas-Cañellas, A., and Pulgarin, C. (2015). Solar disinfection modeling and post-irradiation response of Escherichia coli in wastewater. Chemical Engineering Journal, 281, 588–598. https://doi.org/10.1016/j.cej.2015.06.077 Giannakis, S., López, M. I. P., Spuhler, D., Pérez, J. A. S., Ibáñez, P. F., and Pulgarin, C. (2016a). Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction-Part 2: A 143 | P a g e review of the applications for drinking water and wastewater disinfection. Applied Catalysis B: Environmental, 198, 431–446. https://doi.org/10.1016/j.apcatb.2016.06.007 Giannakis, S., Polo López, M. I., Spuhler, D., Sánchez Pérez, J. A., Fernández Ibáñez, P., and Pulgarin, C. (2016b). Solar disinfection is an augmentable, in situ-generated photo-Fenton reaction—Part 1: A review of the mechanisms and the fundamental aspects of the process. Applied Catalysis B: Environmental, 199, 199–223. https://doi.org/10.1016/j.apcatb.2016.06.009 Gill, L. W., and Price, C. (2010). Preliminary observations of a continuous flow solar disinfection system for a rural community in Kenya. Energy, 35(12), 4607–4611. https://doi.org/10.1016/j.energy.2010.01.008 Gizachew, M., Admasie, A., Wegi, C., and Assefa, E. (2020). Bacteriological Contamination of Drinking Water Supply from Protected Water Sources to Point of Use and Water Handling Practices among Beneficiary Households of Boloso Sore Woreda, Wolaita Zone, Ethiopia. International Journal of Microbiology, 2020, 5340202. https://doi.org/10.1155/2020/5340202 Goldstein, S., Aschengrau, D., Diamant, Y., and Rabani, J. (2007). Photolysis of Aqueous H2O2 : Quantum Yield and Applications for Polychromatic UV Actinometry in Photoreactors. Environmental Science and Technology, 41(21), 7486–7490. https://doi.org/10.1021/ES071379T Gómez-Couso, H., Fontán-Sainz, M., McGuigan, K. G., and Ares-Mazás, E. (2009). Effect of the radiation intensity, water turbidity and exposure time on the survival of Cryptosporidium during simulated solar disinfection of drinking water. Acta Tropica, 112(1), 43–48. https://doi.org/10.1016/J.ACTATROPICA.2009.06.004 Graf, J., Togouet, S. Z., Kemka, N., Niyitegeka, D., Meierhofer, R., and Pieboji, J. G. (2010). Health gains from solar water disinfection (SODIS): evaluation of a water quality intervention in Yaoundé, Cameroon. Journal of Water and Health, 8(4), 779–796. https://doi.org/10.2166/WH.2010.003 Griffiths, J. K. (2016). Waterborne Diseases. In International Encyclopedia of Public Health (Second Edi, Vol. 7). Elsevier. https://doi.org/10.1016/B978-0-12-803678-5.00490-2 Grimm, B. (2004). Bottles for our health. Report of the SODIS Dissemination Project. Phase II: April 2003--March 2004. Gupta, S. (2018). Sodis an Emerging Paradise for Treating Roof-Top Harvested Sodis an Emerging Paradise for Treating Roof-Top. May. Gurung, P., Grimm, B., and Autenrieth, M. A. (2009). Disseminating the SODIS method: Which approach is most effective? Waterlines, 28(2), 130–143. https://doi.org/10.3362/1756- 3488.2009.014 Gutiérrez-Alfaro, S., Acevedo, A., Figueredo, M., Saladin, M., and Manzano, M. A. (2017). Accelerating the process of solar disinfection (SODIS) by using polymer bags. Journal of Chemical Technology and Biotechnology, 92(2), 298–304. https://doi.org/10.1002/JCTB.5005 Gutiérrez-Alfaro, S., Rueda-Márquez, J. J., Perales, J. A., and Manzano, M. A. (2018). Combining sun-based technologies (microalgae and solar disinfection) for urban wastewater regeneration. Science of the Total Environment, 619–620, 1049–1057. https://doi.org/10.1016/j.scitotenv.2017.11.110 Haddad, J. S., Hindiyeh, M. Y., Hasan, W. O., and Lahham, M. M. . Solar Disinfection of Drinking Water Using Sand as a UV-Light Amplifier. 144 | P a g e Halliwell, B. & Gutteridge, J. 1999 Free radicals in biology and medicine. Oxford University Press, Oxford, UK. Halliwell, B., and Aruoma, O. I. (1991). DNA damage by oxygen-derived species Its mechanism and measurement in mammalian systems. FEBS Letters, 281(1–2), 9–19. Halliwell, B., and Gutteridge, J. M. C. (1984). Oxygen toxicity, oxygen radicals, transition metals and disease. Biochemical Journal, 219(1), 1–14. https://doi.org/10.1042/bj2190001 Harding, A. S., and Schwab, K. J. (2012). Using Limes and Synthetic Psoralens to Enhance Solar Disinfection of Water (SODIS): A Laboratory Evaluation with Norovirus, Escherichia coli, and MS2. The American Journal of Tropical Medicine and Hygiene, 86(4), 566. https://doi.org/10.4269/AJTMH.2012.11-0370 Hartman, P. S., and Eisenstark, A. (1978). Synergistic killing of Escherichia coli by near-UV radiation and hydrogen peroxide: distinction between recA-repairable and recA nonrepairable damage. Journal of Bacteriology, 133(2), 769–774. https://doi.org/10.1128/JB.133.2.769-774.1978 Hartman, P. S., and Eisenstark, A. (1980). Killing of Escherichia coli K-12 by near-ultraviolet radiation in the presence of hydrogen peroxide: Role of double-strand DNA breaks in absence of recombinational repair. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 72(1), 31–42. https://doi.org/10.1016/0027-5107(80)90217-1 Heaselgrave, W., and Kilvington, S. (2010). Antimicrobial Activity of Simulated Solar Disinfection against Bacterial, Fungal, and Protozoan Pathogens and Its Enhancement by Riboflavin. Applied and Environmental Microbiology, 76(17), 6010–6012. https://doi.org/10.1128/AEM.00445-10 Heaselgrave, W., Patel, N., Kilvington, S., Kehoe, S. C., and McGuigan, K. G. (2006). Solar disinfection of poliovirus and Acanthamoeba polyphaga cysts in water - A laboratory study using simulated sunlight. Letters in Applied Microbiology, 43(2), 125–130. https://doi.org/10.1111/j.1472-765X.2006.01940.x Helali, S., Polo-López, M. I., Fernández-Ibáñez, P., Ohtani, B., Amano, F., Malato, S., and Guillard, C. (2014). Solar photocatalysis: A green technology for E. coli contaminated water disinfection. Effect of concentration and different types of suspended catalyst. Journal of Photochemistry and Photobiology A: Chemistry, 276, 31–40. https://doi.org/10.1016/j.jphotochem.2013.11.011 Henle, E. S., and Linn, S. (1997). Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. The Journal of Biological Chemistry, 272(31), 19095–19098. https://doi.org/10.1074/JBC.272.31.19095 Heri, S., and Mosler, H. J. (2008). Factors affecting the diffusion of solar water disinfection: A field study in Bolivia. Health Education and Behavior, 35(4), 541–560. https://doi.org/10.1177/1090198108321248 Hoerter, J., Pierce, A., Troupe, C., Epperson, J. & Eisenstark, A. 1996 Role of enterobactin and intracellular iron in cell lethality during near-UV irradiation in Escherichia coli. Photochem. Photobiol. 64(3), 537–541. Hoerter, J.D., Arnold, A .A ., Kuczynska, D.A ., Shibuya, A ., Ward, C.S., Sauer, M.G., Gizachew, A., Hotchkiss, T.M., Fleming, T.J., Johnson, S., 2005. Effects of sub- lethal UVA irradiation on activity levels of oxidative defense enzymes and pro- tein oxidation in Escherichia coli. J. Photochem. Photobiol. B Biol. 81, 171–180. https://doi.org/10.1016/j.jphotobiol.20 145 | P a g e Hunter, P. R. (2009). Household water treatment in developing countries: Comparing different intervention types using meta-regression. Environmental Science and Technology, 43(23), 8991–8997. https://doi.org/10.1021/es9028217 Imlay, J. A. (2003). Pathways of oxidative damge. Annual Review of Microbiology, 57, 395. Imlay, J. A. (2008). Cellular Defenses against Superoxide and Hydrogen Peroxide. Https://Doi.Org/10.1146/Annurev.Biochem.77.061606.161055, 77, 755–776. https://doi.org/10.1146/ANNUREV.BIOCHEM.77.061606.161055 Imlay, J. A., and Linn, S. (1986). Bimodal pattern of killing of DNA-repair-defective or anoxically grown Escherichia coli by hydrogen peroxide. Journal of Bacteriology, 166(2), 519–527. https://doi.org/10.1128/JB.166.2.519-527.1986 Imlay, J. A., and Linn, S. (1988). DNA Damage and Oxygen Radical Toxicity. Science, 240(4857), 1302–1309. https://doi.org/10.1126/SCIENCE.3287616 Islam, M. A., Azad, A. K., Akber, M. A., Rahman, M., & Sadhu, I. (2015). Effectiveness of solar disinfection (SODIS) in rural coastal Bangladesh. Journal of water and health, 13(4), 1113- 1122. Islam, M. A., Sakakibara, H., Karim, M. R., Sekine, M., and Mahmud, Z. H. (2011). Bacteriological assessment of drinking water supply options in coastal areas of Bangladesh. Journal of Water and Health, 9(2), 415–428. https://doi.org/10.2166/WH.2011.114 J. Kiwi and, and Nadtochenko, V. (2005). Evidence for the Mechanism of Photocatalytic Degradation of the Bacterial Wall Membrane at the TiO2 Interface by ATR-FTIR and Laser Kinetic Spectroscopy. Langmuir, 21(10), 4631–4641. https://doi.org/10.1021/LA046983L Jang, S., and Imlay, J. A. (2007). Micromolar intracellular hydrogen peroxide disrupts metabolism by damaging iron-sulfur enzymes. Journal of Biological Chemistry, 282(2), 929–937. https://doi.org/10.1074/jbc.M607646200 Ji, M. F., and Wood, W. (2007). Purchase and consumption habits: Not necessarily what you intend. Journal of Consumer Psychology, 17(4), 261–276. https://doi.org/10.1016/S1057- 7408(07)70037-2 Jones. (1999). Applications of Hydrogen Peroxide and Derivatives. Royal Society of Chemistry, 224. https://doi.org/10.1039/9781847550132 Juvakoski, A., Singhal, G., Manzano, M. A., Moriñigo, M. Á., Vahala, R., and Levchuk, I. (2022). Solar disinfection – An appropriate water treatment method to inactivate faecal bacteria in cold climates. Science of the Total Environment, 827. https://doi.org/10.1016/j.scitotenv.2022.154086 Kalt, P., Birzer, C., Evans, H., Liew, A., Padovan, M., and Watchman, M. (2014). A solar disinfection water treatment system for remote communities. Procedia Engineering, 78, 250– 258. https://doi.org/10.1016/j.proeng.2014.07.064 Karim, Md. R., Khan, Md. H. R. B., Akash, Md. A.-S.-A., and Shams, S. (2021). Effectiveness of solar disinfection for household water treatment: An experimental and modeling study. Journal of Water Sanitation and Hygiene for Development, 11(3), 374–385. https://doi.org/10.2166/washdev.2021.243 Karim, M. R. (2010). Microbial contamination and associated health burden of rainwater harvesting in Bangladesh. Water Science and Technology, 61(8), 2129-2135. Kehoe, S. C., Joyce, T. M., Ibrahim, P., Gillespie, J. B., Shahar, R. A., and McGuigan, K. G. (2001). Effect of agitation, turbidity, aluminium foil reflectors and container volume on the inactivation efficiency of batch-process solar disinfectors. Water Research, 35(4), 1061– 1065. https://doi.org/10.1016/S0043-1354(00)00353-5 146 | P a g e Keogh, M. B., Castro-Alférez, M., Polo-López, M. I., Fernández Calderero, I., Al-Eryani, Y. A., Joseph-Titus, C., Sawant, B., Dhodapkar, R., Mathur, C., McGuigan, K. G., and Fernández Ibáñez, P. (2015). Capability of 19-L polycarbonate plastic water cooler containers for efficient solar water disinfection (SODIS): Field case studies in India, Bahrain and Spain. Solar Energy, 116(June), 1–11. https://doi.org/10.1016/j.solener.2015.03.035 Keyer, K., and Imlay, J. A. (1996). Superoxide accelerates DNA damage by elevating free iron levels. Proceedings of the National Academy of Sciences, 93(24), 13635–13640. https://doi.org/10.1073/PNAS.93.24.13635 Khedikar, I. P., Tembhurkar, A. R., Dabhekar, K. R., and Godboley, B. J. (2021). Effect of turbidity on survival of Escherichia coli, feacal coliform and total coliform in grey water by using solar disinfection (SODIS). Journal of Physics: Conference Series, 1913(1), 6–12. https://doi.org/10.1088/1742-6596/1913/1/012068 Klementová, S., Kříž, D., Kopáček, J., Novák, F., Porcal, P., Sci, P. P., Sirtori, C., Zapata, A., Malato, S., Gernjak, W., Fern, A. R., and Ag, A. (2009). 5th European Meeting on Solar Chemistry and Photocatalysis : Environmental Application Solar photocatalytic treatment of quinolones : intermediates and toxicity evaluation †. Photochemical and Photobiological Sciences, 8, 569–740. Kohn, T., Mattle, M. J., Minella, M., and Vione, D. (2016). A modeling approach to estimate the solar disinfection of viral indicator organisms in waste stabilization ponds and surface waters. Water Research, 88, 912–922. https://doi.org/10.1016/j.watres.2015.11.022 Kraemer, S. M., and Mosler, H. J. (2010). Persuasion factors influencing the decision to use sustainable household water treatment. International Journal of Environmental Health Research, 20(1), 61–79. https://doi.org/10.1080/09603120903398301 Lawand, T. A., Alward, R., Odeyemi, O., Hahn, J., Kandpal, T. C., and Ayoub, J. (1990). Solar water disinfection: proceedings of a workshop held at the Brace Research Institute, Montreal, Que., Canada, 15-17 Aug. 1988. Manuscript Reports/IDRC; 231e. Lee, S. K., Sheridan, M., and Mills, A. (2005). Novel UV-activated colorímetric oxygen indicator. Chemistry of Materials, 17(10), 2744–2751. https://doi.org/10.1021/CM0403863/ASSET/IMAGES/MEDIUM/CM0403863N00001.GIF Lima, B. P., Mamede, G. L., and Lima Neto, I. E. (2018). Monitoramento e modelagem da qualidade de água em uma bacia hidrográfica semiárida. Engenharia Sanitaria e Ambiental, 23(1), 125– 135. https://doi.org/10.1590/S1413-41522018167115 Liochev, S. I., and Fridovich, I. (1994). The role of O2.- in the production of HO.: in vitro and in vivo. Free Radical Biology and Medicine, 16(1), 29–33. https://doi.org/10.1016/0891- 5849(94)90239-9 Luzi, S., Tobler, M., Suter, F., and Meierhofer, R. (2016). SODIS manual (Issue January 2002). M.I. Polo-López, I. García-Fernández, I. Oller, P. Fernández-Ibá˜nez, Photochem- ical & Photobiologiacl Sciences 10 (2011) 381–388. mac Mahon, J., and Gill, L. W. (2018). Sustainability of novel water treatment technologies in developing countries: Lessons learned from research trials on a pilot continuous flow solar water disinfection system in rural Kenya. Development Engineering, 3, 47–59. https://doi.org/10.1016/j.deveng.2018.01.003 Mafart, P., Couvert, O., Gaillard, S., and Leguerinel, I. (2002). On calculating sterility in thermal preservation methods: application of the Weibull frequency distribution model. International Journal of Food Microbiology, 72(1–2), 107–113. https://doi.org/10.1016/S0168- 1605(01)00624-9 147 | P a g e Mahvi, A. H. (2007). Feasibility of solar energy in disinfection of drinking water in Iran. American Eurasian Journal of Agricultural and Environmental Science, 2(4), 407–410. Mailhot, G., Sarakha, M., Lavedrine, B., Cáceres, J., and Malato, S. (2002). Fe(III)-solar light induced degradation of diethyl phthalate (DEP) in aqueous solutions. Chemosphere, 49(6), 525–532. https://doi.org/10.1016/S0045-6535(02)00418-6 Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., and Oller, I. (2013). Solar Photocatalytic Processes: Water Decontamination and Disinfection. In New and Future Developments in Catalysis: Solar Photocatalysis. Elsevier B.V. https://doi.org/10.1016/B978-0-444-53872- 7.00017-0 Malato, S., Fernández-Ibáñez, P., Maldonado, M. I., Blanco, J., and Gernjak, W. (2009). Decontamination and disinfection of water by solar photocatalysis: Recent overview and trends. Catalysis Today, 147(1), 1–59. https://doi.org/10.1016/J.CATTOD.2009.06.018 Marques, A. R., Gomes, F. de C. O., Fonseca, M. P. P., Parreira, J. S., and Santos, V. P. (2013). Efficiency of PET reactors in solar water disinfection for use in southeastern Brazil. Solar Energy, 87(1), 158–167. https://doi.org/10.1016/j.solener.2012.10.016 Martín-Domínguez, A., Alarcón-Herrera, M. T., Martín-Domínguez, I. R., and González-Herrera, A. (2005). Efficiency in the disinfection of water for human consumption in rural communities using solar radiation. Solar Energy, 78(1), 31–40. https://doi.org/10.1016/J.SOLENER.2004.07.005 Martínez-García, A., Vincent, M., Rubiolo, V., Domingos, M., Canela, M. C., Oller, I., Fernández Ibáñez, P., and Polo-López, M. I. (2020). Assessment of a pilot solar V-trough reactor for solar water disinfection. Chemical Engineering Journal, 399(June), 125719. https://doi.org/10.1016/j.cej.2020.125719 Marugán, J., Giannakis, S., McGuigan, K. G., and Polo-López, I. (2020). Solar Disinfection as a Water Treatment Technology. 1–16. https://doi.org/10.1007/978-3-319-70061-8_125-1 Matlack, C., Chizeck, H., Davis, T. B., and Linnes, J. (2011). A low-cost solar disinfection indicator for safe water. Proceedings - 2011 IEEE Global Humanitarian Technology Conference, GHTC 2011, 283–286. https://doi.org/10.1109/GHTC.2011.81 Mathur, A. (2015). Conductivity: water quality assessment. Int. J. Eng. Res, 3(3). Mäusezahl, D., Christen, A., Pacheco, G. D., Tellez, F. A., Iriarte, M., Zapata, M. E., Cevallos, M., Hattendorf, J., Cattaneo, M. D., Arnold, B., Smith, T. A., and Colford, J. M. (2009). Solar Drinking Water Disinfection (SODIS) to Reduce Childhood Diarrhoea in Rural Bolivia: A Cluster-Randomized, Controlled Trial. PLOS Medicine, 6(8), e1000125. https://doi.org/10.1371/JOURNAL.PMED.1000125 Mbonimpa, E. G., Vadheim, B., and Blatchley, E. R. (2012). Continuous-flow solar UVB disinfection reactor for drinking water. Water Research, 46(7), 2344–2354. https://doi.org/10.1016/J.WATRES.2012.02.003 Mcguigan, K. G., Conroy, R. M., and Mosler, H.. Author ’ s personal copy Solar water disinfection ( SODIS ): A review from bench-top to roof-top. McGuigan, K. G., Conroy, R. M., Mosler, H.-J., Preez, M. du, Ubomba-Jaswa, E., and Fernandez Ibañez, P. (2012). Solar water disinfection (SODIS): A review from bench-top to roof-top. Journal of Hazardous Materials, 235–236, 29–46. https://doi.org/10.1016/j.jhazmat.2012.07.053 McGuigan, K. G., Joyce, T. M., Conroy, R. M., Gillespie, J. B., and Elmore-Meegan, M. (1998). Solar disinfection of drinking water contained in transparent plastic bottles: Characterizing 148 | P a g e the bacterial inactivation process. Journal of Applied Microbiology, 84(6), 1138–1148. https://doi.org/10.1046/j.1365-2672.1998.00455.x McGuigan, K. G., Samaiyar, P., du Preez, M., and Conroy, R. M. (2011). High compliance randomized controlled field trial of solar disinfection of drinking water and its impact on childhood diarrhea in rural Cambodia. Environmental Science and Technology, 45(18), 7862–7867. https://doi.org/10.1021/ES201313X/SUPPL_FILE/ES201313X_SI_002.PDF McLoughlin, O. A., Fernández Ibáñez, P., Gernjak, W., Malato Rodriguez, S., and Gill, L. W. (2004). Photocatalytic disinfection of water using low cost compound parabolic collectors. Solar Energy, 77(5), 625–633. https://doi.org/10.1016/j.solener.2004.05.017 McLoughlin, O. A., Kehoe, S. C., McGuigan, K. G., Duffy, E. F., al Touati, F., Gernjak, W., Oller Alberola, I., Malato Rodríguez, S., and Gill, L. W. (2004). Solar disinfection of contaminated water: a comparison of three small-scale reactors. Solar Energy, 77(5), 657–664. https://doi.org/10.1016/J.SOLENER.2004.07.004 McMichael, S., Waso, M., Reyneke, B., Khan, W., Byrne, J. A., and Fernandez-Ibanez, P. (2021). Electrochemically assisted photocatalysis for the disinfection of rainwater under solar irradiation. Applied Catalysis B: Environmental, 281(August 2020), 119485. https://doi.org/10.1016/j.apcatb.2020.119485 Meierhofer, R., and Landolt, G. (2009). Factors supporting the sustained use of solar water disinfection - Experiences from a global promotion and dissemination programme. Desalination, 248(1–3), 144–151. https://doi.org/10.1016/j.desal.2008.05.050 Meierhofer, R., and Wegelin, M. (2002). Solar Disinfection of Water: A Guide for the Application of SODIS. https://ejurnal.bppt.go.id/index.php/JAI/article/view/2455 Mills, A., Lee, S. K., and Sheridan, M. (2005). Development of a novel UV indicator and dosimeter film. Analyst, 130(7), 1046–1051. https://doi.org/10.1039/B502969D Montgomery, D. C., Peck, E. A., and Vining, G. G. (2021). Introduction to linear regression analysis. John Wiley \and Sons. Morse, T., Luwe, K., Lungu, K., Chiwaula, L., Mulwafu, W., Buck, L., Harlow, R., Fagan, G. H., and McGuigan, K. (2020). A Transdisciplinary Methodology for Introducing Solar Water Disinfection to Rural Communities in Malawi—Formative Research Findings. Integrated Environmental Assessment and Management, 16(6), 871–884. https://doi.org/10.1002/ieam.4249 Moser, S., and Mosler, H. J. (2008). Differences in influence patterns between groups predicting the adoption of a solar disinfection technology for drinking water in Bolivia. Social Science and Medicine, 67(4), 497–504. https://doi.org/10.1016/j.socscimed.2008.04.002 Mosler, H. J. (2005). Determinants of the diffusion of SODIS: A quantitative field study in Bolivia. Working Paper. Mostafa, M. G. (2021). Scope of Solar Energy for Disinfection Water in Bangladesh. June. Mostafa, M. G., and Han, M. Y. (2021). Utilization of Solar Energy for the Disinfection of Drinking Water in Bangladesh. July 2020. Muela, A., García-Bringas, J. M., Seco, C., Arana, I., and Barcina, I. (2002). Participation of oxygen and role of exogenous and endogenous sensitizers in the photoinactivation of Escherichia coli by photosynthetically active radiation, UV-A and UV-B. Microbial Ecology, 44(4), 354–364. https://doi.org/10.1007/s00248-002-1027-y Mustafa, A., Scholz, M., Khan, S., and Ghaffar, A. (2013). Application of solar disinfection for treatment of contaminated public water supply in a developing country: Field observations. Journal of Water and Health, 11(1), 135–145. https://doi.org/10.2166/wh.2012.119 149 | P a g e Nalwanga, R., Quilty, B., Muyanja, C., Fernandez-Ibañez, P., and McGuigan, K. G. (2014). Evaluation of solar disinfection of E. coli under Sub-Saharan field conditions using a 25L borosilicate glass batch reactor fitted with a compound parabolic collector. Solar Energy, 100, 195–202. https://doi.org/10.1016/j.solener.2013.12.011 Narain, A, A., U, Kc., and SK, M. (2012). Feasibility of solar energy in disinfection of water source for an Indian village – a case study. International Journal Environtment Science, 2(4), 2338– 2345. https://doi.org/10.6088/ijes.002 02030115 Navntoft, C., Araujo, P., Litter, M. I., Apella, M. C., Fernández, D., Puchulu, M. E., del Margarita, V. H., and Blesa, M. A. (2007). Field Tests of the Solar Water Detoxification SOLWATER Reactor in Los Pereyra, Tucumán, Argentina. Journal of Solar Energy Engineering, 129(1), 127–134. https://doi.org/10.1115/1.2391318 Navntoft, C., Ubomba-Jaswa, E., McGuigan, K. G., and Fernández-Ibáñez, P. (2008). Effectiveness of solar disinfection using batch reactors with non-imaging aluminium reflectors under real conditions: Natural well-water and solar light. Journal of Photochemistry and Photobiology B: Biology, 93(3), 155–161. https://doi.org/10.1016/j.jphotobiol.2008.08.002 Ndounla, J., and Pulgarin, C. (2014). Evaluation of the efficiency of the photo Fenton disinfection of natural drinking water source during the monsoon season in the Sahelian region. Science of The Total Environment, 493, 229–238. https://doi.org/10.1016/J.SCITOTENV.2014.05.139 Ndounla, J., Kenfack, S., Wéthé, J., and Pulgarin, C. (2014). Relevant impact of irradiance (vs. dose) and evolution of pH and mineral nitrogen compounds during natural water disinfection by photo-Fenton in a solar CPC reactor. Applied Catalysis B: Environmental, 148–149, 144– 153. https://doi.org/10.1016/j.apcatb.2013.10.048 Ndounla, J., Spuhler, D., Kenfack, S., Wéthé, J., and Pulgarin, C. (2013). Inactivation by solar photo-Fenton in pet bottles of wild enteric bacteria of natural well water: Absence of re growth after one week of subsequent storage. Applied Catalysis B: Environmental, 129, 309– 317. https://doi.org/10.1016/j.apcatb.2012.09.016 Neal, D. T., Wood, W., and Quinn, J. M. (2006). Habits - A repeat performance. Current Directions in Psychological Science, 15(4), 198–202. https://doi.org/10.1111/j.1467-8721.2006.00435.x Nelson, K. L., Boehm, A. B., Davies-Colley, R. J., Dodd, M. C., Kohn, T., Linden, K. G., Liu, Y., Maraccini, P. A., McNeill, K., Mitch, W. A., Nguyen, T. H., Parker, K. M., Rodriguez, R. A., Sassoubre, L. M., Silverman, A. I., Wigginton, K. R., and Zepp, R. G. (2018). Sunlight mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. Environmental Science: Processes and Impacts, 20(8), 1089–1122. https://doi.org/10.1039/c8em00047f Ng, T. W., An, T., Li, G., Ho, W. K., Yip, H. Y., Zhao, H., and Wong, P. K. (2015). The role and synergistic effect of the light irradiation and H2O2 in photocatalytic inactivation of Escherichia coli. Journal of Photochemistry and Photobiology B: Biology, 149, 164–171. https://doi.org/10.1016/j.jphotobiol.2015.06.007 Nwankwo, E. J., Agunwamba, J. C., and Nnaji, C. C. (2019). Effect of Radiation Intensity , Water Temperature and Support-Base Materials on the Inactivation Efficiency of Solar Water Disinfection ( SODIS ) Content courtesy of Springer Nature , terms of use apply . Rights reserved . Content courtesy of Springer Nat. Nwankwo, E. J., Agunwamba, J. C., Igwe, S. E., and Odenigbo, C. (2022). Regression models for predicting the die-off rate of E. coli in solar water disinfection. Journal of Water Sanitation and Hygiene for Development, 12(8), 575–586. https://doi.org/10.2166/washdev.2022.056 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/1949 | |
dc.description | Supervised by Dr. Md. Rezaul Karim, Professor, Department of Civil and Environmental Engineering (CEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh | en_US |
dc.description.abstract | Solar disinfection (SODIS) is a low-cost, effective, sustainable, and easy-to-use method recognized by the World Health Organization (WHO) as an HWT option for eradicating different microorganisms in drinking water. Studies have shown that the main limitations of SODIS are prolonged exposure time (>6h), ineffective during the monsoon and winter seasons and the regrowth of microorganisms after treatment. To overcome these limitations, the performance of a modified SODIS with a photocatalyst (H2O2) was evaluated in this study by the photo-Fenton process using test water and drinking water collected from restaurants, slums, and household areas following the WHO protocol during the monsoon and winter seasons in sub-tropical climatic conditions of Bangladesh. In addition, to predict the bacterial disinfection rate using the modified SODIS with H2O2, regression analysis was performed. Two types of test waters were prepared according to the WHO protocol. The SODIS experiment was conducted using reactors (polyethylene terephthalate (PET) bottles and plastic bags) of 500 ml capacity. 5 ml of H2O2 were added to each PET or plastic bag (PB). In each batch, six PET or PB with test water or collected drinking water samples were used and exposed to sunlight using a fabricated SODIS chamber for 6 h in both the monsoon (June-October, 2022) and winter (November-February, 2023) seasons. Before the SODIS experiment, the physicochemical and bacteriological water quality parameters were measured. In every test, physicochemical parameters such as dissolved oxygen (DO), electrical conductivity (EC), pH, turbidity, and water temperature were assessed along with bacteriological parameters such as Escherichia coli (E. coli) testing. During each hour of the SODIS experiment, one sample was taken for physicochemical and bacteriological testing along with the measurement of solar irradiance at an interval of 1 min. After 6 h, the SODIS-treated water was kept in the dark at room temperature for 12 and 24 h to check the regrowth potential of xv | P a g e the microorganisms. Drinking water samples were also collected from restaurants, slums, and household establishments in Dhaka City to evaluate the modified SODIS. The physicochemical parameter variations before and after SODIS illustrated that there were no significant changes except in the EC values. The efficacy of modified SODIS with H2O2 illustrates only 2 h was required by the PET bottle to inactivate bacteria, and 1 h was required for PB in the monsoon season, where a 6.7 log reduction value (LRV) was achieved. On the other hand, in the winter season, 2 h was required to inactivate bacteria in a PET bottle and PB, where a 5.49 LRV was achieved. There was no regrowth after the 12 and 24 h post-SODIS periods in the monsoon and winter seasons, respectively. The performance of SODIS with H2O2 was termed “Highly Protective” based on microbial inactivation (LRV >4). The Weibull bacterial inactivation model fits well with the data of PET bottles and PB in the monsoon and winter seasons, with an R2 value of 0.95-0.98. The safe exposure time for achieving the four LRV was 1 h as the minimum and 2 h as the maximum. In terms of regression analysis, the maximum accuracy was illustrated by PB (TW-1) with an R2 value of 0.79 (79%), where the equation coefficients are turbidity, water temperature, solar irradiance, and DO. Regression analysis showed that the disinfection rate increased when the water temperature, solar irradiance and DO increase and decreased when the turbidity increased. The statistical analysis results from the regression analysis also illustrated the fit of the model to the data obtained in this study. Drinking water samples from restaurants, slums, and household areas water parameter results illustrate that most of the water was microbially contaminated and that iron was present in the water. The application of the modified SODIS with H2O2 and conventional SODIS illustrates that the modified SODIS performs better, and there was no regrowth in the modified SODIS. This study’s outcome shows data similar to the literature available on SODIS for inactivating bacteria. SODIS, if promoted properly, can be a potential xvi | P a g e method for drinking safe water and providing access to water in the water stressed areas of Bangladesh and other developing countries. The results of this study will help people acknowledge the efficacy of SODIS in Bangladesh and other developing countries, and use SODIS for potable water | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Civil and Environmental Engineering(CEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.title | Performance Evaluation of a Modified SODIS under Sub-tropical Climate Conditions in Bangladesh | en_US |
dc.type | Thesis | en_US |