| Login
dc.contributor.author | Khan, Mashfiq | |
dc.contributor.author | Abrar, Nurul | |
dc.date.accessioned | 2024-01-03T08:29:02Z | |
dc.date.available | 2024-01-03T08:29:02Z | |
dc.date.issued | 2023-05-30 | |
dc.identifier.citation | [1]Li DHW, Cheung KL, Lam TNT, Chan W. A study of grid-connected photovoltaic (PV) system in Hong Kong. Appl Energy 2012;90:122–7 [2] Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus 21, 611–619. doi: 10.3402/tellusa. v21i5.10109 [3] Islam, M. D., Kubo, I., Ohadi, M., and Alili, A. A. (2009). Measurement of solar energy radiation in Abu Dhabi, UAE. Appl. Energy 86, 511–515. doi: 10.1016/j. apenergy.2008.07.012 [4] Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., et al. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science 329, 834–838. doi: 10.1126/science.11 84984 [5] Siingh, D., Singh, R. P., Singh, A. K., Kulkarni, M. N., Gautam, A. S., and Singh, A. K. (2011). Solar activity, lightning and climate. Surv. Geophys. 32, 659–703. doi: 10.1007/s10712-011-9127-1 [6] Ohunakin, O. S., Adaramola, M. S., Oyewola, O. M., Matthew, O. J., and Fagbenle, R. O. (2015). The effect of climate change on solar radiation in Nigeria. Sol. Energy 116, 272– 286. doi: 10.1016/j.solener.2015.03.027 [7] Iziomon, M. G., and Mayer, H. (2002). Assessment of some global solar radiation parameterizations. J. Atmos. Solar Terrestrial Phys. 64, 1631–1643. doi: 10.1016/ S1364- 6826(02)00131-1 114 [8] Mellit, A. (2008). Artificial Intelligence technique for modelling and forecasting of solar radiation data: a review. Int.J. Artif.Intell. Soft Comput. 1:52. doi: 10.1504/ijaisc.2008.021264 [9] Li, M., Tian, J., and Chen, F. (2008). Improving multiclass pattern recognition with a co-evolutionary RBFNN. Pattern Recognit. Lett. 29, 392–406. doi: 10.1016/j. patrec.2007.10.019 [10] Li, M. F., Fan, L., Liu, H. B., Wu, W., and Chen, J. L. (2012). Impact of time interval on the ångström-Prescott coefficients and their interchangeability in estimating radiation. Renew. Energy 44, 431–438. doi: 10.1016/j.renene.2012.01.107 [11] Li, X., Wang, L., and Sung, E. (2008). AdaBoost with SVM-based component classifiers. Eng. Appl. Artif. Intell. 21, 785–795. doi: 10.1016/j.engappai.2007.07. 001 [12] Halabi, L. M., Mekhilef, S., and Hossain, M. (2018). Performance evaluation of hybrid adaptive neuro-fuzzy inference system models for predicting monthly global solar radiation. Appl. Energy 213, 247–261. doi: 10.1016/j.apenergy.2018. 01.035 [13] Makade, R. G., Chakrabarti, S., and Jamil, B. (2019). Prediction of global solar radiation using a single empirical model for diversified locations across India. Urban Clim. 29:100492. doi: 10.1016/j.uclim.2019.100492 [14] Lee, H.-J., Kim, S.-Y., & Yun, C.-Y. (2017). Comparison of Solar Radiation Models to Estimate Direct Normal Irradiance for Korea. Energies, 10(5), 594. doi:10.3390/en10050594 https://www.researchgate.net/publication/316639367_Comparison_of_Solar_Radiation_ Models_to_Estimate_Direct_Normal_Irradiance_for_Korea 115 [15] Lou, S., Li, D. H. W., Lam, J. C., & Chan, W. W. H. (2016). Prediction of diffuse solar irradiance using learning and multivariable regression. Applied Energy, 181, 367–374. doi:10.1016/j.apenergy.2016.08.093 https://www.sciencedirect.com/science/article/abs/pii/S0306261916311916 [16] R. Lizarte, M. Izquierdo, J.D. Marcos, E. Palacios, An innovative solar-driven directly air-cooled LiBr–H2O absorption chiller prototype for residential use, Energy Build. 47 (2012) 1–11, https://doi.org/10.1016/j.enbuild.2011.11.011. [17] D.N. Basu, A. Ganguly, Conceptual design and Performance Analysis of a Solar Thermal-Photovoltaic-Powered Absorption Refrigeration System, J. Sol. Energy Eng. 137 (2015) 31020–31029, https://doi.org/10.1115/1.4029910. [18] E. Bellos, C. Tzivanids, C. Symeou, K.A. Antonopoulos, Energetic, exergetic and financial evaluation of a solar driven absorption chiller – a dynamic approach, Energy Convers. Manage. 137 (2017) 34–48 0.1016/j.enconman.2017.01.041. [19] G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Design and construction of a LiBr–water absorption machine, Energy Convers. Manage. 44 (15) (2003)2483–2508, https://doi.org/10.1016/S0196-8904(03)00006-2. [20] D.N. Basu, A. Ganguly, Solar thermal–photovoltaic powered potato cold storage conceptual design and performance analyses, Appl. Energy 165 (1) (2016) 308–317, https://doi.org/10.1016/j.apenergy.2015.12.070. [21] A. Ganguly, R.K. De, Conceptual design and performance analysis of a parabolic trough collector supported multi-commodity cold storage, IOP Conference Series, Mater. Sci. Eng. 402 (0120497) (2018) 1–10, https://doi.org/10.1088/1757-899X/402/1/012049. 116 [22] A. Hmida, N. Chekir, A. Laafer, M.E.A. Slimani, A.B. Brahim, Modeling of cold room driven by an absorption refrigerator in the south of Tunisia: a detailed energy and thermodynamicbanalysis,bJ.CleanerbProd.b211b(2019)b1239–1249 https://doi.org/1016/j.jclepro.2018.11.219. [23] F. Agyenim, I. Knight, M. Rhodes, Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store, Sol. Energy 84 (5) (2010) 735–744, https://doi.org/10.1016/j.solener.2010.01.013. [24] R.K. De, A. Ganguly, Energy and economic analysis of a solar supported multicommodity cold storage, J. Brazil. Soc. Mechan. Sci. Eng. 41 (393) (2019) 1–17, https://doi.org/10.1007/s40430-019-1893-6. [25] A. Arora, S.C. Kaushik, Theoretical analysis of LiBr/H2O absorption refrigeration systems, Int. J. Energy Res. 33 (2009) 1321–1340, https://doi.org/10.1002/er.1542 [26] N. C. Srivastava, Solar operated system for a 100 tons potato cold store, Proc.e Int. Solar Energy Society Congress (New Delhi, India, 1978) [27] F. Agyenim, I. Knight and M. Rhodes, Design and experimental testing of the performance of an outdoor LiBr/H2O solar thermal absorption cooling system with a cold store, Solar Energy 84 (2010) 735–744. [28] D. N. Basu and A. Ganguly, Solar thermal–photovoltaic powered potato cold storage– conceptual design and performance analyses, Appl. Energy 165 (2016) 308–317. [29] A. Hmida, N. Chekir, A. Laafer, M. E. A. Slimani and A. B. Brahim, Modeling of cold room driven by an absorption refrigerator in the south of Tunisia: A detailed energy and thermodynamic analysis, J. Cleaner Production 211 (2019) 1239–1249. 117 [30] A. Ganguly and R. K. De, Conceptual design and performance analysis of a parabolic trough collector supported multi-commodity cold storage, IOP Conf. Series: Materials Science and Engineering 402 (2018) 1–10. [31]. A. Arora and S. C. Kaushik, Theoretical analysis of LiBr/H2O absorption refrigeration systems, Int. J. Energy Res. 33 (2009) 1321–1340 [32] R.K. De, A. Ganguly, Energy and economic analysis of a solar supported multicommodity cold storage, J. Brazil. Soc. Mechan. Sci. Eng. 41 (393) (2019) 1–17, https://doi.org/10.1007/s40430-019-1893-6. [33] A. Ganguly, R.K. De, Conceptual design and performance analysis of a parabolic trough collector supported multi-commodity cold storage, IOP Conference Series, Mater. Sci. Eng. 402 (0120497) (2018) 1–10, https://doi.org/10.1088/1757-899X/402/1/012049 [34] D.N. Basu, A. Ganguly, Solar thermal–photovoltaic powered potato cold storage– conceptual design and performance analyses, Appl. Energy 165 (1) (2016) 308–317, https://doi.org/10.1016/j.apenergy.2015.12.070 [35] G.A. Florides, S.A. Kalogirou, S.A. Tassou, L.C. Wrobel, Design and construction of a LiBr–water absorption machine, Energy Convers. Manage. 44 (15) (2003) 2483–2508, https://doi.org/10.1016/S0196-8904(03)00006-2 [36] R.K. De, A. Ganguly, Energy, exergy and economic analysis of a solar hybrid power system integrated double-effect vapor absorption system based cold storage, Int. J. Air-Condition. Refriger. 27 (2) (2019) 1–13, https://doi.org/10.1142/S2010132519500184 118 [37] A. Arora, S.C. Kaushik, Theoretical analysis of LiBr/H2O absorption refrigeration systems, Int. J. Energy Res. 33 (2009) 1321–1340, https://doi.org/10.1002/er. 1542 [38] De RK, Ganguly A. Performance comparison of solar-driven single and double-effect LiBr-water vapor absorption system based cold storage. Therm Sci Eng Prog [Internet]. 2020;17(August 2019):100488. Available from: https://doi.org/10.1016/j.tsep.2020.100488 [39] Hasanuzzaman, M., Rahim, N. A., Saidur, R., & Rahim, N. A. (2020). Performance evaluation of a solar-driven vapor absorption refrigeration system in Bangladesh. Journal of Cleaner Production, 253, 119954. [40] “BP.Statistical review of world energy 2012,” BP, 2012. [Online]. Available: http://www.bp.com/assets/bp_internet/globalbp/globalbp_uk_english/reports_and_publica tions/statistical_energy_review_2011/STAGING/local_assets/pdf/statistical_review_of_w orld_energy_full_report_2012.pdf. [Accessed 2018] [41] M. T. Islam, “Current energy scenario and future prospect of renewable energy,” Renewable and Sustainable Energy Reviews, p. 1074–1088, 2014. [42]“AkbarMS.EnergyandnuclearpowerplanninginBangladesh.Nuclearenergy,” 2012. [Online]. Available: http://www.iaea.org/INPRO/activities/Joint_SE/2._Bangladesh_Shawkat_Akbar.pdf. [Accessed 2018]. [43] A. F, “Alternative energy resources in Bangladesh and future prospect.,” Renew Sustain Energy Rev, p. 698–707., 2013 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2007 | |
dc.description | Supervised by Prof. Dr. Mohammad Ahsan Habib, Co-Supervised By Mr. Muhammad Mahmood Hasan, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.description.abstract | The demand for sustainable solutions in cold storage is being propelled by the increasing need for renewable energy. To meet this demand, solar energy can be seamlessly integrated into cold storage systems. However, in order to ensure efficient utilization of solar energy, accurate predictions of solar data are crucial to address uncertainties and overcome challenges. Various statistical techniques, including regression, SVM regression, and neural network models, can be employed to forecast solar information by leveraging past solar data. These models rely on data from a selected projection model to generate solar energy. The utilization of a parabolic trough collector is an effective method to convert solar energy into heat, resulting in significant fuel savings of approximately 28 units per year, equivalent to 11% of the overall fuel demand. This reduction in fuel consumption not only leads to cost savings but also reduces dependence on unsustainable energy sources. A comparative study evaluating the performance of cold storage systems compared a double effect vapor absorption refrigeration system to a single-effect system. The double-effect system was preferred due to its lower input heat requirement (1815.55 kW < 3023.87 kW) and higher coefficient of performance (COP) value (1.3 > 0.76) in the multi-effect system. These factors indicate enhanced efficiency and optimal functionality, making the double effect system the superior choice for cold storage applications. Additionally, the study also considered cost and emissions implications. The findings demonstrate the feasibility and long-term sustainability of integrating solar energy into cold storage systems. The analysis reveals that renewable energy integration can lead to a reduction of 30% in greenhouse gas emissions. Embracing sustainable energy sources is not only environmentally wise but also crucial in transitioning away from fossil fuel-dependent systems. The study proposes a viable solution by incorporating a solar system into a fuel generator-based cold storage system, offering the potential to address energy-related challenges. By utilizing solar data and efficient technologies like the parabolic trough collector, solar energy can significantly enhance the sustainability of cold storage systems. After a thorough evaluation, the N BEATS model was identified as the most suitable predictive model for the system. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Solar radiation, prediction model, machine learning, statistical model, neural network model, Double effect vapor absorption refrigeration system | en_US |
dc.title | A Machine Learning Based Analysis of Double Effect Vapor Absorption Refrigeration Cycle based Cold Storage | en_US |
dc.type | Thesis | en_US |