Effect of Point and Line Defects on the Mechanical Behavior of Single Layer MoTe2

Show simple item record

dc.contributor.author Aziz, Md. Jobayer
dc.date.accessioned 2024-01-03T08:36:30Z
dc.date.available 2024-01-03T08:36:30Z
dc.date.issued 2023-05-30
dc.identifier.citation [1] S. H. Mir, V. K. Yadav, J. K. Singh, and J. K. Singh, “Recent Advances in the Carrier Mobility of Two-Dimensional Materials: A Theoretical Perspective,” ACS Omega, vol. 5, no. 24. 2020. doi: 10.1021/acsomega.0c01676. [2] D. Akinwande et al., “A review on mechanics and mechanical properties of 2D materials— Graphene and beyond,” Extreme Mechanics Letters, vol. 13. 2017. doi: 10.1016/j.eml.2017.01.008. [3] Z. Xiong, L. Zhong, H. Wang, and X. Li, “Structural defects, mechanical behaviors and properties of two‐dimensional materials,” Materials, vol. 14, no. 5. 2021. doi: 10.3390/ma14051192. [4] W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, “Recent development of two-dimensional transition metal dichalcogenides and their applications,” Materials Today, vol. 20, no. 3. Elsevier B.V., pp. 116–130, Apr. 01, 2017. doi: 10.1016/j.mattod.2016.10.002. [5] S. A. Han, R. Bhatia, and S. W. Kim, “Synthesis, properties and potential applications of two-dimensional transition metal dichalcogenides,” Nano Convergence, vol. 2, no. 1. 2015. doi: 10.1186/s40580-015-0048-4. [6] K. Kim, J. Y. Choi, T. Kim, S. H. Cho, and H. J. Chung, “A role for graphene in silicon based semiconductor devices,” Nature, vol. 479, no. 7373. 2011. doi: 10.1038/nature10680. [7] Alsema and M. J. E. De Wild-Scholten, “Reduction of the environmental impacts in crystalline silicon module manufacturing,” 22nd Eur. Photovolt. Sol. Energy Conf., 2007. [8] X. Duan, C. Wang, A. Pan, R. Yu, and X. Duan, “Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: Opportunities and challenges,” Chemical Society Reviews, vol. 44, no. 24. 2015. doi: 10.1039/c5cs00507h. [9] E. Singh, K. S. Kim, G. Y. Yeom, and H. S. Nalwa, “Two-dimensional transition metal dichalcogenide-based counter electrodes for dye-sensitized solar cells,” RSC Advances, vol. 7, no. 45. 2017. doi: 10.1039/c7ra03599c. 120 [10] Y. Tan et al., “Controllable 2H-to-1T′ phase transition in few-layer MoTe2,” Nanoscale, vol. 10, no. 42, 2018, doi: 10.1039/c8nr06115g. [11] Z. Wu and Z. Ni, “Spectroscopic investigation of defects in two-dimensional materials,” Nanophotonics, vol. 6, no. 6. 2017. doi: 10.1515/nanoph-2016-0151. [12] N. Khossossi, D. Singh, A. Ainane, and R. Ahuja, “Recent progress of defect chemistry on 2D materials for advanced battery anodes,” Chemistry - An Asian Journal, vol. 15, no. 21. 2020. doi: 10.1002/asia.202000908. [13] V. Sorkin, Q. X. Pei, and Y. W. Zhang, “Modelling of Defects and Failure in 2D Materials: Graphene and Beyond,” in Handbook of Materials Modeling, 2018. doi: 10.1007/978-3- 319-50257-1_45-1. [14] K. Kumar Gupta, T. Mukhopadhyay, A. Roy, and S. Dey, “Probing the compound effect of spatially varying intrinsic defects and doping on mechanical properties of hybrid graphene monolayers,” J. Mater. Sci. Technol., vol. 50, 2020, doi: 10.1016/j.jmst.2020.03.004. [15] S. Plimpton, “LAMMPS documentation,” … . cs. sandia. gov/~ sjplimp/lammps/doc/Manual. html, 2007. [16] M. Chhowalla, H. S. Shin, G. Eda, L. J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nature Chemistry, vol. 5, no. 4. 2013. doi: 10.1038/nchem.1589. [17] B. Mortazavi, G. R. Berdiyorov, M. Makaremi, and T. Rabczuk, “Mechanical responses of two-dimensional MoTe2; pristine 2H, 1T and 1T′ and 1T′/2H heterostructure,” Extrem. Mech. Lett., vol. 20, 2018, doi: 10.1016/j.eml.2018.01.005. [18] Y. Wang et al., “Structural phase transition in monolayer MoTe2 driven by electrostatic doping,” Nature, vol. 550, no. 7677, 2017, doi: 10.1038/nature24043. [19] F. Ling et al., “Enhancing hydrogen evolution on the basal plane of transition metal dichacolgenide van der Waals heterostructures,” npj Comput. Mater., vol. 5, no. 1, 2019, doi: 10.1038/s41524-019-0161-8. [20] N. R. Pradhan et al., “Hall and field-effect mobilities in few layered p-WSe2 field-effect 121 transistors,” Sci. Rep., vol. 5, 2015, doi: 10.1038/srep08979. [21] Y. F. Lin et al., “Ambipolar MoTe2 transistors and their applications in logic circuits,” Adv. Mater., vol. 26, no. 20, 2014, doi: 10.1002/adma.201305845. [22] J. C. Park et al., “Phase-Engineered Synthesis of Centimeter-Scale 1T′- and 2H Molybdenum Ditelluride Thin Films,” ACS Nano, vol. 9, no. 6, 2015, doi: 10.1021/acsnano.5b02511. [23] W. Zhang, M. H. Chiu, C. H. Chen, W. Chen, L. J. Li, and A. T. S. Wee, “Role of metal contacts in high-performance phototransistors based on WSe2 monolayers,” ACS Nano, vol. 8, no. 8, 2014, doi: 10.1021/nn503521c. [24] S. Cho et al., “Phase patterning for ohmic homojunction contact in MoTe2,” Science (80-. )., vol. 349, no. 6248, 2015, doi: 10.1126/science.aab3175. [25] R. Kappera et al., “Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,” Nat. Mater., vol. 13, no. 12, 2014, doi: 10.1038/nmat4080. [26] K. A. N. Duerloo, Y. Li, and E. J. Reed, “Structural phase transitions in two-dimensional Mo-and W-dichalcogenide monolayers,” Nat. Commun., vol. 5, 2014, doi: 10.1038/ncomms5214. [27] K. A. N. Duerloo and E. J. Reed, “Structural phase transitions by design in monolayer alloys,” ACS Nano, vol. 10, no. 1, 2016, doi: 10.1021/acsnano.5b04359. [28] Y. Li, K. A. N. Duerloo, K. Wauson, and E. J. Reed, “Structural semiconductor-to semimetal phase transition in two-dimensional materials induced by electrostatic gating,” Nat. Commun., vol. 7, 2016, doi: 10.1038/ncomms10671. [29] C. Zhang et al., “Charge Mediated Reversible Metal-Insulator Transition in Monolayer MoTe2 and WxMo1-xTe2 Alloy,” ACS Nano, vol. 10, no. 8, 2016, doi: 10.1021/acsnano.6b00148. [30] X. Qian, J. Liu, L. Fu, and J. Li, “Quantum spin hall effect in two - Dimensional transition metal dichalcogenides,” Science (80-. )., vol. 346, no. 6215, 2014, doi: 10.1126/science.1256815. 122 [31] D. H. Keum et al., “Bandgap opening in few-layered monoclinic MoTe2,” Nat. Phys., vol. 11, no. 6, 2015, doi: 10.1038/nphys3314. [32] A. A. Soluyanov et al., “Type-II Weyl semimetals,” Nat. 2015 5277579, vol. 527, no. 7579, pp. 495–498, Nov. 2015, doi: 10.1038/nature15768. [33] Y. Sun, S.-C. Wu, M. N. Ali, C. Felser, and B. Yan, “Prediction of Weyl semimetal in orthorhombic MoTe2,” Phys. Rev. B, vol. 92, no. 16, 2015. [34] Z. Wang et al., “MoTe2: A Type-II Weyl Topological Metal,” Phys. Rev. Lett., vol. 117, no. 5, 2016, doi: 10.1103/PhysRevLett.117.056805. [35] H. Weng, C. Fang, Z. Fang, B. Andrei Bernevig, and X. Dai, “Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides,” Phys. Rev. X, vol. 5, no. 1, 2015, doi: 10.1103/PhysRevX.5.011029. [36] S. Y. Xu et al., “Discovery of a Weyl fermion semimetal and topological Fermi arcs,” Science (80-. )., vol. 349, no. 6248, 2015, doi: 10.1126/science.aaa9297. [37] G. Bian et al., “Topological nodal-line fermions in spin-orbit metal PbTaSe2,” Nat. Commun., vol. 7, 2016, doi: 10.1038/ncomms10556. [38] L. Huang et al., “Spectroscopic evidence for a type II Weyl semimetallic state in MoTe2,” Nat. Mater., vol. 15, no. 11, 2016, doi: 10.1038/nmat4685. [39] X. Xu et al., “Millimeter-Scale Single-Crystalline Semiconducting MoTe2 via Solid-to Solid Phase Transformation,” J. Am. Chem. Soc., vol. 141, no. 5, 2019, doi: 10.1021/jacs.8b12230. [40] W. Hou et al., “Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor,” Nat. Nanotechnol., vol. 14, no. 7, 2019, doi: 10.1038/s41565-019-0466- 2. [41] G. Y. Bae, J. Kim, J. Kim, S. Lee, and E. Lee, “MoTe2 field‐effect transistors with low contact resistance through phase tuning by laser irradiation,” Nanomaterials, vol. 11, no. 11, 2021, doi: 10.3390/nano11112805. [42] N. R. Pradhan et al., “Field-effect transistors based on few-layered α-MoTe2,” ACS Nano, 123 vol. 8, no. 6, 2014, doi: 10.1021/nn501013c. [43] C. Ruppert, O. B. Aslan, and T. F. Heinz, “Optical properties and band gap of single- and few-layer MoTe2 crystals,” Nano Lett., vol. 14, no. 11, 2014, doi: 10.1021/nl502557g. [44] M. Zhu, W. Luo, N. Wu, X. A. Zhang, and S. Qin, “Engineering few-layer MoTe2 devices by Co/hBN tunnel contacts,” Appl. Phys. Lett., vol. 112, no. 18, 2018, doi: 10.1063/1.5027586. [45] Q. Li et al., “Sub-5 nm Gate Length Monolayer MoTe2 Transistors,” J. Phys. Chem. C, vol. 125, no. 35, 2021, doi: 10.1021/acs.jpcc.1c01754. [46] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P. Wong, “Device scaling limits of Si MOSFETs and their application dependencies,” Proc. IEEE, vol. 89, no. 3, 2001, doi: 10.1109/5.915374. [47] J. M. Pimbley and J. D. Meindl, “MOSFET Scaling Limits Determined by Subthreshold Conduction,” IEEE Trans. Electron Devices, vol. 36, no. 9, 1989, doi: 10.1109/16.34233. [48] R. Kappera et al., “Metallic 1T phase source/drain electrodes for field effect transistors from chemical vapor deposited MoS2,” APL Mater., vol. 2, no. 9, 2014, doi: 10.1063/1.4896077. [49] S. Song, D. H. Keum, S. Cho, D. Perello, Y. Kim, and Y. H. Lee, “Room Temperature Semiconductor-Metal Transition of MoTe2 Thin Films Engineered by Strain,” Nano Lett., vol. 16, no. 1, 2016, doi: 10.1021/acs.nanolett.5b03481. [50] N. A. Pertsev, A. G. Zembilgotov, and A. K. Tagantsev, “Effect of Mechanical Boundary Conditions on Phase Diagrams of Epitaxial Ferroelectric Thin Films,” Phys. Rev. Lett., vol. 80, no. 9, 1998, doi: 10.1103/PhysRevLett.80.1988. [51] J. H. Haeni et al., “Room-temperature ferroelectricity in strained SrTiO3,” Nature, vol. 430, no. 7001, 2004, doi: 10.1038/nature02773. [52] J. Cao et al., “Strain engineering and one-dimensional organization of metal-insulator domains in single-crystal vanadium dioxide beams,” Nat. Nanotechnol., vol. 4, no. 11, 2009, doi: 10.1038/nnano.2009.266. [53] H. Takahashi, K. Igawa, K. Arii, Y. Kamihara, M. Hirano, and H. Hosono, 124 “Superconductivity at 43 K in an iron-based layered compound LaO1-xFxFeAs,” Nature, vol. 453, no. 7193, 2008, doi: 10.1038/nature06972. [54] L. Gao et al., “Superconductivity up to 164 K in HgBa2Cam-1CumO2m+2+δ (m=1, 2, and 3) under quasihydrostatic pressures,” Phys. Rev. B, vol. 50, no. 6, 1994, doi: 10.1103/PhysRevB.50.4260. [55] Y. Wang, X. Ren, K. Otsuka, and A. Saxena, “Temperature-stress phase diagram of strain glass Ti48.5Ni51.5,” Acta Mater., vol. 56, no. 12, 2008, doi: 10.1016/j.actamat.2008.02.032. [56] P. May, U. Khan, and J. N. Coleman, “Reinforcement of metal with liquid-exfoliated inorganic nano-platelets,” Appl. Phys. Lett., vol. 103, no. 16, 2013, doi: 10.1063/1.4825279. [57] B. R. Rano, I. M. Syed, and S. H. Naqib, “Ab initio approach to the elastic, electronic, and optical properties of MoTe2 topological Weyl semimetal,” J. Alloys Compd., vol. 829, 2020, doi: 10.1016/j.jallcom.2020.154522. [58] Y. Sun et al., “Elastic Properties and Fracture Behaviors of Biaxially Deformed, Polymorphic MoTe2,” Nano Lett., vol. 19, no. 2, 2019, doi: 10.1021/acs.nanolett.8b03833. [59] D. ÇakIr, F. M. Peeters, and C. Sevik, “Mechanical and thermal properties of h -MX2 (M = Cr, Mo, W; X = O, S, Se, Te) monolayers: A comparative study,” Appl. Phys. Lett., vol. 104, no. 20, 2014, doi: 10.1063/1.4879543. [60] J. Li, N. V. Medhekar, and V. B. Shenoy, “Bonding charge density and ultimate strength of monolayer transition metal dichalcogenides,” J. Phys. Chem. C, vol. 117, no. 30, 2013, doi: 10.1021/jp403986v. [61] M. K. Jana et al., “A combined experimental and theoretical study of the structural, electronic and vibrational properties of bulk and few-layer Td-WTe2,” J. Phys. Condens. Matter, vol. 27, no. 28, 2015, doi: 10.1088/0953-8984/27/28/285401. [62] Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals. 2017. doi: 10.5772/intechopen.71767. [63] M. L. Pereira Júnior et al., “On the elastic properties and fracture patterns of MoX2 (X = S, Se, Te) membranes: A reactive molecular dynamics study,” Condens. Matter, vol. 5, no. 4, 125 2020, doi: 10.3390/condmat5040073. [64] S. A. Chowdhury et al., “Mechanical Properties and Strain Transfer Behavior of Molybdenum Ditelluride (MoTe2) Thin Films,” J. Eng. Mater. Technol., vol. 144, no. 1, 2022, doi: 10.1115/1.4051306. [65] S. Shao, H. M. Zbib, I. Mastorakos, and D. F. Bahr, “Effect of interfaces in the work hardening of nanoscale multilayer metallic composites during nanoindentation: A molecular dynamics investigation,” J. Eng. Mater. Technol., vol. 135, no. 2, 2013, doi: 10.1115/1.4023672. [66] J. W. Jiang and H. S. Park, “Mechanical properties of MoS2/graphene heterostructures,” Appl. Phys. Lett., vol. 105, no. 3, 2014, doi: 10.1063/1.4891342. [67] F. Ma, Y. J. Sun, D. Y. Ma, K. W. Xu, and P. K. Chu, “Reversible phase transformation in graphene nano-ribbons: Lattice shearing based mechanism,” Acta Mater., vol. 59, no. 17, 2011, doi: 10.1016/j.actamat.2011.07.036. [68] F. H. Stillinger and T. A. Weber, “Computer simulation of local order in condensed phases of silicon,” Phys. Rev. B, vol. 31, no. 8, 1985, doi: 10.1103/PhysRevB.31.5262. [69] T. Liang, S. R. Phillpot, and S. B. Sinnott, “Parametrization of a reactive many-body potential for Mo-S systems,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 79, no. 24, 2009, doi: 10.1103/PhysRevB.79.245110. [70] J. Tersoff, “Modeling solid-state chemistry: Interatomic potentials for multicomponent systems,” Phys. Rev. B, vol. 39, no. 8, 1989, doi: 10.1103/PhysRevB.39.5566. [71] M. Z. Hossain, T. Hao, and B. Silverman, “Stillinger-Weber potential for elastic and fracture properties in graphene and carbon nanotubes,” J. Phys. Condens. Matter, vol. 30, no. 5, 2018, doi: 10.1088/1361-648X/aaa3cc. [72] K. Burke, “Perspective on density functional theory,” J. Chem. Phys., vol. 136, no. 15, 2012, doi: 10.1063/1.4704546. [73] A. J. Cohen, P. Mori-Sánchez, and W. Yang, “Insights into current limitations of density functional theory,” Science, vol. 321, no. 5890. 2008. doi: 10.1126/science.1158722. 126 [74] P. and W. K. Hohenberg, “Inhomogeneous Electron Gas. Physical Review,” Am. Phys. Soc., vol. 136(3B), no. p. B864-B871., 1964. [75] M. K. Harbola and V. Sahni, “Quantum-mechanical interpretation of the exchange correlation potential of kohn-sham density-functional theory,” Phys. Rev. Lett., vol. 62, no. 5, 1989, doi: 10.1103/PhysRevLett.62.489. [76] G. E. W. Bauer, “General operator ground-state expectation values in the Hohenberg-Kohn Sham density-functional formalism,” Phys. Rev. B, vol. 27, no. 10, 1983, doi: 10.1103/PhysRevB.27.5912. [77] S. Alavi, “Statistical Mechanics: Theory and Molecular Simulation. By Mark E. Tuckerman.,” Angew. Chemie Int. Ed., vol. 50, no. 51, 2011, doi: 10.1002/anie.201105752. [78] A. Rahman, “Correlations in the motion of atoms in liquid argon,” Phys. Rev., vol. 136, no. 2A, 1964, doi: 10.1103/PhysRev.136.A405. [79] M. Born, K. Huang, and M. Lax, “Dynamical Theory of Crystal Lattices,” Am. J. Phys., vol. 23, no. 7, 1955, doi: 10.1119/1.1934059. [80] T. Luo and J. R. Lloyd, “Equilibrium molecular dynamics study of lattice thermal conductivity/conductance of Au-SAM-Au junctions,” J. Heat Transfer, vol. 132, no. 3, 2010, doi: 10.1115/1.4000047. [81] R. M. Betz and R. C. Walker, “Paramfit: Automated optimization of force field parameters for molecular dynamics simulations,” J. Comput. Chem., vol. 36, no. 2, 2015, doi: 10.1002/jcc.23775. [82] S. L. Mayo, B. D. Olafson, and W. A. Goddard, “DREIDING: A generic force field for molecular simulations,” J. Phys. Chem., vol. 94, no. 26, 1990, doi: 10.1021/j100389a010. [83] A. K. Rappé, C. J. Casewit, K. S. Colwell, W. A. Goddard, and W. M. Skiff, “UFF, a Full Periodic Table Force Field for Molecular Mechanics and Molecular Dynamics Simulations,” J. Am. Chem. Soc., vol. 114, no. 25, 1992, doi: 10.1021/ja00051a040. [84] A. D. MacKerell et al., “All-atom empirical potential for molecular modeling and dynamics studies of proteins,” J. Phys. Chem. B, vol. 102, no. 18, 1998, doi: 10.1021/jp973084f. 127 [85] W. D. Cornell et al., “ A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules J . Am . Chem . Soc . 1995 , 117 , 5179−5197 ,” J. Am. Chem. Soc., vol. 118, no. 9, 1996, doi: 10.1021/ja955032e. [86] C. Oostenbrink, A. Villa, A. E. Mark, and W. F. Van Gunsteren, “A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6,” J. Comput. Chem., vol. 25, no. 13, 2004, doi: 10.1002/jcc.20090. [87] W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, “Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids,” J. Am. Chem. Soc., vol. 118, no. 45, 1996, doi: 10.1021/ja9621760. [88] H. Sun, “Compass: An ab initio force-field optimized for condensed-phase applications - Overview with details on alkane and benzene compounds,” J. Phys. Chem. B, vol. 102, no. 38, 1998, doi: 10.1021/jp980939v. [89] J.-W. Jiang and Y.-P. Zhou, “Parameterization of Stillinger-Weber Potential for Two Dimensional Atomic Crystals,” in Handbook of Stillinger-Weber Potential Parameters for Two-Dimensional Atomic Crystals, InTech, 2017. doi: 10.5772/intechopen.71929. [90] Y. Y. Zhang, Q. X. Pei, J. W. Jiang, N. Wei, and Y. W. Zhang, “Thermal conductivities of single- and multi-layer phosphorene: A molecular dynamics study,” Nanoscale, vol. 8, no. 1, 2016, doi: 10.1039/c5nr05451f. [91] M. Ghorbani-Asl, A. N. Enyashin, A. Kuc, G. Seifert, and T. Heine, “Defect-induced conductivity anisotropy in MoS 2 monolayers,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 88, no. 24, 2013, doi: 10.1103/PhysRevB.88.245440. [92] S. Ippolito and P. Samorì, “Defect Engineering Strategies Toward Controlled Functionalization of Solution‐Processed Transition Metal Dichalcogenides,” Small Sci., vol. 2, no. 4, 2022, doi: 10.1002/smsc.202100122. [93] R. Addou, L. Colombo, and R. M. Wallace, “Surface Defects on Natural MoS2,” ACS Appl. Mater. Interfaces, vol. 7, no. 22, 2015, doi: 10.1021/acsami.5b01778. [94] F. Cleri, S. R. Phillpot, D. Wolf, and S. Yip, “Atomistic simulations of materials fracture 128 and the link between atomic and continuum length scales,” J. Am. Ceram. Soc., vol. 81, no. 3, 1998, doi: 10.1111/j.1151-2916.1998.tb02368.x. [95] R. A. S. I. Subad, T. S. Akash, P. Bose, and M. M. Islam, “Engineered defects to modulate fracture strength of single layer MoS2: An atomistic study,” Phys. B Condens. Matter, vol. 592, no. October 2019, p. 412219, Sep. 2020, doi: 10.1016/j.physb.2020.412219. [96] T. Sun et al., “Defect chemistry in 2D materials for electrocatalysis,” Materials Today Energy, vol. 12. 2019. doi: 10.1016/j.mtener.2019.01.004. [97] T. Wang, J. Li, H. Jin, and Y. Wei, “Tuning the electronic and magnetic properties of InSe nanosheets by transition metal doping,” Phys. Chem. Chem. Phys., vol. 20, no. 11, 2018, doi: 10.1039/c8cp00219c. [98] N. Zhang and M. Asle Zaeem, “Role of grain boundaries in determining strength and plastic deformation of yttria-stabilized tetragonal zirconia bicrystals,” J. Mater. Sci., vol. 53, no. 8, 2018, doi: 10.1007/s10853-017-1595-3. [99] S. J. Plimpton and C. Knight, “Rendezvous algorithms for large-scale modeling and simulation,” J. Parallel Distrib. Comput., vol. 147, pp. 184–195, Jan. 2021, doi: 10.1016/J.JPDC.2020.09.001. [100] A. Stukowski, “Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool,” Model. Simul. Mater. Sci. Eng., vol. 18, no. 1, 2010, doi: 10.1088/0965-0393/18/1/015012. [101] T. Li, “Ideal strength and phonon instability in single-layer MoS2,” Phys. Rev. B, vol. 85, no. 23, p. 235407, Jun. 2012, doi: 10.1103/PhysRevB.85.235407. [102] M. M. Islam et al., “ReaxFF molecular dynamics simulations on lithiated sulfur cathode materials,” Phys. Chem. Chem. Phys., vol. 17, no. 5, pp. 3383–3393, 2015, doi: 10.1039/C4CP04532G. [103] L. Yu, Q. Yan, and A. Ruzsinszky, “Negative Poisson’s ratio in 1T-type crystalline two dimensional transition metal dichalcogenides,” Nat. Commun., vol. 8, 2017, doi: 10.1038/ncomms15224. 129 [104] H. Jin et al., “Emerging Two-Dimensional Nanomaterials for Electrocatalysis,” Chemical Reviews, vol. 118, no. 13. 2018. doi: 10.1021/acs.chemrev.7b00689. [105] J.-W. Jiang, “Parametrization of Stillinger–Weber potential based on valence force field model: application to single-layer MoS2 and black phosphorus,” Nanotechnology, vol. 26, no. 31, p. 315706, Jul. 2015, doi: 10.1088/0957-4484/26/31/315706 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2009
dc.description Supervised by Dr. Md. Rezwanul Karim, Associate Professor, Department of Civil and Environmental Engineering (CEE) Islamic University of Technology (IUT) Board Bazar, Gazipur, Bangladesh en_US
dc.description.abstract Following the groundbreaking discovery of graphene, the scientific community has witnessed a surge of interest in two-dimensional (2D) materials during recent times, remarkable capabilities and versatility for technological applications. Apart from graphene, a lot of promising work has been reported from other two-dimensional materials, including boron nitrides (like hBN, or "white graphite"), dichalcogenides (like MoS2), silicene, germanane, stanene, etc. To use these materials successfully in nanodevices and systems, it is important to figure out their elastic and mechanical properties. This will help define the limits of useful applications for flexible electronics. Two typical computational techniques for atomically thin models like 2D materials are molecular dynamics and density functional theory. Using the concepts of classical mechanics, molecular dynamics mimics the motion of atoms and molecules in a complicated system. In this study, the effect of point and line defects on the 2D transition metal dichalcogenides (TMDs) namely molybdenum ditelluride (MoTe2) were investigated using the Sandia National Laboratory's Molecular Dynamics Program LAMMPS. Three distinct types of point defect structures were investigated: a 2-tellurium vacancy structure, a 4-tellurium vacancy structure, and a 6-tellurium vacancy accompanied by a 1-molybdenum vacancy structure. Line defects were placed along armchair axis and zigzag axis. We characterized their mechanical characteristics, including axial stiffness, ultimate strength, and ultimate strain, as well as their thermal behavior at temperatures ranging from 1 Kelvin to 600 Kelvin, using atomistic computational techniques en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Effect of Point and Line Defects on the Mechanical Behavior of Single Layer MoTe2 en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics