dc.identifier.citation |
[1] P. Promvonge, S. Skullong, S. Kwankaomeng, C. Thiangpong, Heat transfer in square duct fitted diagonally with angle-finned tape-Part 2: Numerical study, International Communications in Heat and Mass Transfer. 39 (2012) 625–633. https://doi.org/10.1016/j.icheatmasstransfer.2012.03.010. [2] P. Promvonge, S. Tamna, M. Pimsarn, C. Thianpong, Thermal characterization in a circular tube fitted with inclined horseshoe baffles, Appl Therm Eng. 75 (2015) 1147–1155. https://doi.org/10.1016/j.applthermaleng.2014.10.045. [3] D. Sahel, H. Ameur, R. Benzeguir, Y. Kamla, Enhancement of heat transfer in a rectangular channel with perforated baffles, Appl Therm Eng. 101 (2016) 156–164. https://doi.org/10.1016/j.applthermaleng.2016.02.136. [4] A. Khanlari, H.Ö. Güler, A.D. Tuncer, C. Şirin, Y.C. Bilge, Y. Yılmaz, A. Güngör, Experimental and numerical study of the effect of integrating plus-shaped perforated baffles to solar air collector in drying application, Renew Energy. 145 (2020) 1677–1692. https://doi.org/10.1016/j.renene.2019.07.076. [5] J.J. Fiuk, K. Dutkowski, Experimental investigations on thermal efficiency of a prototype passive solar air collector with wavelike baffles, Solar Energy. 188 (2019) 495–506. https://doi.org/10.1016/j.solener.2019.06.030. [6] J. Cabonce, R. Fernando, H. Wang, H. Chanson, Using small triangular baffles to facilitate upstream fish passage in standard box culverts, Environmental Fluid Mechanics. 19 (2019) 157– 179. https://doi.org/10.1007/s10652-018-9604-x. [7] Y. Wang, K.C. Smith, Numerical investigation of convective transport in redox flow battery tanks: Using baffles to increase utilization, J Energy Storage. 25 (2019). https://doi.org/10.1016/j.est.2019.100840. [8] A.K. Hilo, A.R. Abu Talib, A. Acosta Iborra, M.T. Hameed Sultan, M.F. Abdul Hamid, Effect of corrugated wall combined with backward-facing step channel on fluid flow and heat transfer, Energy. 190 (2020). https://doi.org/10.1016/j.energy.2019.116294. [9] Z. yu Zhao, B. Han, X. Wang, Q. cheng Zhang, T.J. Lu, Out-of-plane compression of Ti-6Al-4V sandwich panels with corrugated channel cores, Mater Des. 137 (2018) 463–472. https://doi.org/10.1016/j.matdes.2017.10.055. [10] H.H. Afrouzi, M. Ahmadian, A. Moshfegh, D. Toghraie, A. Javadzadegan, Statistical analysis of pulsating non-Newtonian flow in a corrugated channel using Lattice-Boltzmann method, Physica A: Statistical Mechanics and Its Applications. 535 (2019). https://doi.org/10.1016/j.physa.2019.122486. [11] X. Zhu, F. Haglind, Computational fluid dynamics modeling of liquid–gas flow patterns and hydraulics in the cross-corrugated channel of a plate heat exchanger, International Journal of Multiphase Flow. 122 (2020). https://doi.org/10.1016/j.ijmultiphaseflow.2019.103163. 44 [12] D.E. ALNAK, Thermohydraulic performance study of different square baffle angles in cross corrugated channel, J Energy Storage. 28 (2020). https://doi.org/10.1016/j.est.2020.101295. [13] E. Ünal, H. Ahn, E. Sorguven, Experimental investigation on flows in a corrugated channel, Journal of Fluids Engineering, Transactions of the ASME. 138 (2016). https://doi.org/10.1115/1.4032754. [14] P. Naphon, Effect of corrugated plates in an in-phase arrangement on the heat transfer and flow developments, Int J Heat Mass Transf. 51 (2008) 3963–3971. https://doi.org/10.1016/j.ijheatmasstransfer.2007.11.050. [15] P. Naphon, Heat transfer characteristics and pressure drop in channel with V corrugated upper and lower plates, Energy Convers Manag. 48 (2007) 1516–1524. https://doi.org/10.1016/j.enconman.2006.11.020. [16] P. Naphon, Effect of wavy plate geometry configurations on the temperature and flow distributions, International Communications in Heat and Mass Transfer. 36 (2009) 942–946. https://doi.org/10.1016/j.icheatmasstransfer.2009.05.007. [17] I. v. Miroshnichenko, M.A. Sheremet, I. Pop, A. Ishak, Convective heat transfer of micropolar fluid in a horizontal wavy channel under the local heating, Int J Mech Sci. 128–129 (2017) 541– 549. https://doi.org/10.1016/j.ijmecsci.2017.05.013. [18] A.M. Hussein, Adaptive Neuro-Fuzzy Inference System of friction factor and heat transfer nanofluid turbulent flow in a heated tube, Case Studies in Thermal Engineering. 8 (2016) 94–104. https://doi.org/10.1016/j.csite.2016.06.001. [19] A.M. Hussein, H.K. Dawood, R.A. Bakara, K. Kadirgamaa, Numerical study on turbulent forced convective heat transfer using nanofluids TiO2 in an automotive cooling system, Case Studies in Thermal Engineering. 9 (2017) 72–78. https://doi.org/10.1016/j.csite.2016.11.005. [20] V. Bianco, O. Manca, S. Nardini, Numerical investigation on nanofluids turbulent convection heat transfer inside a circular tube, International Journal of Thermal Sciences. 50 (2011) 341–349. https://doi.org/10.1016/j.ijthermalsci.2010.03.008. [21] H.A. Mohammed, A.N. Al-Shamani, J.M. Sheriff, Thermal and hydraulic characteristics of turbulent nanofluids flow in a rib-groove channel, International Communications in Heat and Mass Transfer. 39 (2012) 1584–1594. https://doi.org/10.1016/j.icheatmasstransfer.2012.10.020. [22] W. Yu, H. Xie, A review on nanofluids: Preparation, stability mechanisms, and applications, J Nanomater. 2012 (2012). https://doi.org/10.1155/2012/435873. [23] M. Rostamani, S.F. Hosseinizadeh, M. Gorji, J.M. Khodadadi, Numerical study of turbulent forced convection flow of nanofluids in a long horizontal duct considering variable properties, International Communications in Heat and Mass Transfer. 37 (2010) 1426–1431. https://doi.org/10.1016/j.icheatmasstransfer.2010.08.007. [24] S.A. Moshizi, A. Malvandi, D.D. Ganji, I. Pop, A two-phase theoretical study of Al2O3-water nanofluid flow inside a concentric pipe with heat generation/absorption, International Journal of Thermal Sciences. 84 (2014) 347–357. https://doi.org/10.1016/j.ijthermalsci.2014.06.012. 45 [25] B. Takabi, H. Shokouhmand, Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, International Journal of Modern Physics C. 26 (2015). https://doi.org/10.1142/S0129183115500473. [26] M. Shahul Hameed, S. Suresh, R.K. Singh, Comparative study of heat transfer and friction characteristics of water-based Alumina–copper and Alumina–CNT hybrid nanofluids in laminar flow through pipes, J Therm Anal Calorim. 136 (2019) 243–253. https://doi.org/10.1007/s10973- 018-7898-z. [27] S.K. Singh, J. Sarkar, Experimental hydrothermal characteristics of concentric tube heat exchanger with V-cut twisted tape turbulator using PCM dispersed mono/hybrid nanofluids, Experimental Heat Transfer. 34 (2021) 421–442. https://doi.org/10.1080/08916152.2020.1772412. [28] D. Madhesh, S. Kalaiselvam, Experimental analysis of hybrid nanofluid as a coolant, in: Procedia Eng, Elsevier Ltd, 2014: pp. 1667–1675. https://doi.org/10.1016/j.proeng.2014.12.317. [29] S. Suresh, K.P. Venkitaraj, P. Selvakumar, M. Chandrasekar, Effect of Al 2O 3-Cu/water hybrid nanofluid in heat transfer, Exp Therm Fluid Sci. 38 (2012) 54–60. https://doi.org/10.1016/j.expthermflusci.2011.11.007. [30] J.A. Eastman, S.R. Phillpot, S.U.S. Choi, P. Keblinski, Thermal transport in nanofluids, Annu Rev Mater Res. 34 (2004) 219–246. https://doi.org/10.1146/annurev.matsci.34.052803.090621. [31] J. Sarkar, A critical review on convective heat transfer correlations of nanofluids, Renewable and Sustainable Energy Reviews. 15 (2011) 3271–3277. https://doi.org/10.1016/j.rser.2011.04.025. [32] M.M. Klazly, G. Bognár, Investigation of convective heat transfer enhancement for nanofluid flow over flat plate, in: J Phys Conf Ser, Institute of Physics Publishing, 2020. https://doi.org/10.1088/1742-6596/1564/1/012007. [33] A. Bibi, H. Xu, Q. Sun, I. Pop, Q. Zhao, Free convection of a hybrid nanofluid past a vertical plate embedded in a porous medium with anisotropic permeability, Int J Numer Methods Heat Fluid Flow. 22 (2020) 4083–4101. https://doi.org/10.1108/HFF-10-2019-0799. [34] B. Takabi, H. Shokouhmand, Effects of Al2O3-Cu/water hybrid nanofluid on heat transfer and flow characteristics in turbulent regime, International Journal of Modern Physics C. 26 (2015). https://doi.org/10.1142/S0129183115500473. [35] Y. Xuan, W. Roetzel, Conceptions for heat transfer correlation of nano¯uids, n.d. www.elsevier.com/locate/ijhmt. [36] H.C. Brinkman, The viscosity of concentrated suspensions and solutions, J Chem Phys. 20 (1952) 571. https://doi.org/10.1063/1.1700493. [37] T. Hayat, S. Nadeem, Heat transfer enhancement with Ag–CuO/water hybrid nanofluid, Results Phys. 7 (2017) 2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034. [38] R.S. Vajjha, D.K. Das, D.P. Kulkarni, Development of new correlations for convective heat transfer and friction factor in turbulent regime for nanofluids, Int J Heat Mass Transf. 53 (2010) 4607–4618. https://doi.org/10.1016/j.ijheatmasstransfer.2010.06.032. [39] O.A. Akbari, D. Toghraie, A. Karimipour, M.R. Safaei, M. Goodarzi, H. Alipour, M. Dahari, Investigation of rib’s height effect on heat transfer and flow parameters of laminar water-Al2O3 46 nanofluid in a rib-microchannel, Appl Math Comput. 290 (2016) 135–153. https://doi.org/10.1016/j.amc.2016.05.053. [40] S. Dinarvand, M.N. Rostami, I. Pop, A novel hybridity model for TiO2-CuO/water hybrid nanofluid flow over a static/moving wedge or corner, Sci Rep. 9 (2019). https://doi.org/10.1038/s41598-019-52720-6 |
en_US |