dc.identifier.citation |
[1] C. Eng, “Structural vibration analysis: Modelling, analysis and damping of vibration structures,” Eng. Anal., vol. 1, no. 1, p. 63, 1984, doi: 10.1016/0264-682x(84)90015-7. [2] M. L. Chandravanshi and A. K. Mukhopadhyay, “Modal analysis of structural vibration,” ASME Int. Mech. Eng. Congr. Expo. Proc., vol. 14, pp. 1–9, 2013, doi: 10.1115/IMECE2013- 62533. [3] C.-M. Uang and M. Bruneau, “State-of-the-Art Review on Seismic Design of Steel Structures,” J. Struct. Eng., vol. 144, no. 4, p. 03118002, 2018, doi: 10.1061/(asce)st.1943- 541x.0001973. [ ] T. . Galambos, “Recent research and design developments in steel and composite steel concrete structures in USA,” J. Constr. Steel Res., vol. 55, no. 1–3, pp. 289–303, 2000, doi: 10.1016/S0143-974X(99)00090-5. [ ] K. Ghaedi, Z. Ibrahim, H. Adeli, and A. Javanmardi, “Invited review: Recent developments in vibration control of building and bridge structures,” J. Vibroengineering, vol. 19, no. 5, pp. 3564–3580, 2017, doi: 10.21595/jve.2017.18900. [6] G. Song, . Sethi, and H. . Li, “ ibration control of civil structures using piezoceramic smart materials: A review,” Eng. Struct., vol. 28, no. 11, pp. 1513–1524, 2006, doi: 10.1016/j.engstruct.2006.02.002. [ ] K. Roik, U. orka, and . echent, “ ibration control of structures under earthquake loading by three‐stage friction‐grip elements,” Earthq. Eng. Struct. Dyn., vol. 16, no. 4, pp. 501–521, 1988, doi: 10.1002/eqe.4290160404. [8] O. El-Khoury and H. Adeli, “Recent Advances on ibration Control of Structures Under ynamic Loading,” Arch. Comput. Methods Eng., vol. 20, no. 4, pp. 353–360, 2013, doi: 10.1007/s11831-013-9088-2. [9] Bhave Shrikant, Mechanical Vibrations: Theory and Practice, 1st ed. New Delhi: Pearson India, 2010. [10] X. ang, “Analysis of a Single egree of reedom Spring-Mass-Dashpot System Using Transfer Function, Integration, State Space, and Frequency Response Methods,” Freq. Anal. Vib. Energy Harvest. Syst., pp. 1–13, 2016, doi: 10.1016/b978-0-12-802321- 1.00001-7. [11] R. W. C. BAHRAM NOUR-OMI , “Short communication,” Earthq. Eng. Struct. Dyn., vol. 13, pp. 271–275, 1985, doi: https://doi.org/10.1002/eqe.4290130210. [12] SIMSCALE, “ hat is von Mises Stress ,” 2021. https://www.simscale.com/docs/simwiki/fea-finite-element-analysis/what-is-von-mises-stress/ (accessed May 09, 2022). [1 ] S. L. Chan, “ ibration and modal analysis of steel frames with semi-rigid connections,” Eng. Struct., vol. 16, no. 1, pp. 25–31, 1994, doi: 10.1016/0141-0296(94)90101-5. [1 ] B. ivek and . Raychowdhury, “Experimental modal analysis of a steel frame structure with S SI effects,” no. ovember, 201 . 61 [15] Y. Zhou, A. Kareem, and M. Gu, “Mode Shape Corrections for ind Load Effects,” J. Eng. Mech., vol. 128, no. 1, pp. 15–23, 2002, doi: 10.1061/(asce)0733-9399(2002)128:1(15). [16] . Zhou and A. Kareem, “Torsional load effects on buildings under wind,” Struct. Congr. 2000 Adv. Technol. Struct. Eng., vol. 103, 2004, doi: 10.1061/40492(2000)84. [1 ] S. Sandun e Silva and . . Thambiratnam, “ ynamic characteristics of steel-deck composite floors under human-induced loads,” Comput. Struct., vol. 87, no. 17–18, pp. 1067– 1076, 2009, doi: 10.1016/j.compstruc.2009.04.005. [1 ] . Kwak, S. Lee, J. ark, . Hwang, J. . Jeon, and J. ark, “Effect of the static compressive load on vibration propagation in multistory buildings and resulting heavyweight floor impact sounds,” J. Acoust. Soc. Am., vol. 142, no. 1, pp. 308–316, 2017, doi: 10.1121/1.4994290. [1 ] C. M. Chan and J. K. L. Chui, “ ind-induced response and serviceability design optimization of tall steel buildings,” Eng. Struct., vol. 28, no. 4, pp. 503–513, 2006, doi: 10.1016/j.engstruct.2005.09.005. [20] K. T. Tse, . A. Hitchcock, and K. C. S. Kwok, “Mode shape linearization for H BB analysis of wind-excited complex tall buildings,” Eng. Struct., vol. 31, no. 3, pp. 675–685, 2009, doi: 10.1016/j.engstruct.2008.11.012. [21] T. ting Ma, L. Zhao, . yu Chen, . jun Ge, and . Zhang, “ ind-induced dynamic performance of a super-large hyperbolic steel-truss cooling tower,” Thin-Walled Struct., vol. 157, no. January, p. 107061, 2020, doi: 10.1016/j.tws.2020.107061. [22] X. Chen and A. Kareem, “Coupled ynamic Analysis and Equivalent Static ind Loads on Buildings with Three- imensional Modes,” J. Struct. Eng., vol. 131, no. 7, pp. 1071–1082, 2005, doi: 10.1061/(asce)0733-9445(2005)131:7(1071). [2 ] X. Chen and A. Kareem, “Equivalent Static ind Loads on Buildings: ew Model,” J. Struct. Eng., vol. 130, no. 10, pp. 1425–1435, 2004, doi: 10.1061/(asce)0733- 9445(2004)130:10(1425). [2 ] M. Sahin and M. Ozturk, “Uniform Shear Buildings under the Effect of Gravity Loads,” J. Eng. Mech., vol. 133, no. 1, pp. 48–57, 2007, doi: 10.1061/(asce)0733-9399(2007)133:1(48). [2 ] . Bernal, “Instability of Buildings Subjected to Earthquakes,” J. Struct. Eng., vol. 118, no. 8, pp. 2239–2260, 1992, doi: 10.1061/(asce)0733-9445(1992)118:8(2239). [26] “effect of gravity loading on the earthquake response of cooling towers.pdf.” . [2 ] MAT EB, “Mild Steel Standard ata.” https://www.matweb.com/search/datasheet.aspx?bassnum=MS0001&ckck=1 (accessed May 09, 2022). [2 ] Texio, “ G-281 Function Generator - Discontinued - Product detail|TEXIO TECH OLOG COR ORATIO _.pdf.” https://www.texio.co.jp/en/product/detail/22. [2 ] G I SKTEK, “Instek G S-1102B 100MHz , 2-Channel , 1Gs / S , Digital Storage Oscilloscope,” 2008. https://www.signaltestinc.com/product-p/gds-1102b.htm. 62 [ 0] The Modal Shop I C., “SmartAmp TM ower Amplifier roduct Manual.” https://www.modalshop.com/excitation/SmartAmp-Power-Amplifier?ID=357. [ 1] The Modal Shop I C., “ lbf ual urpose Shaker.” https://www.modalshop.com/excitation/75-lbf-Dual-Purpose-Shaker?ID=251. [ 2] anasonic, “Eddy Current Type isplacement Sensor - Displacement Sensors | Technical Guide - Panasonic Eddy Current Type Displacement Sensor - isplacement Sensors.” https://www3.panasonic.biz/ac/ae/service/tech_support/fasys/tech_guide/measurement/eddy_curr ent_type/index.jsp. [33] (R. M. GRICE, n.d.) [34] Nguyen T-T, Kim N-I, Lee J, Free vibration of thin-walled functionally graded open-section beams, Composites Part B (2016), doi: 10.1016/j.compositesb.2016.03.057. [35] Jiao, H., Wu, C., Li, G., & Lin, G. (2018). Fatigue crack growth behavior and life prediction of welded joints in steel structures. Journal of Constructional Steel Research, 143, 208-221. [36] Kim, K. S., & Kim, J. K. (2018). Numerical and experimental study on crack initiation and propagation in steel structures. Journal of Structural Engineering, 144(3), 04017181. [37] Li, G., Yang, B., & Jiao, H. (2018). Effect of multiple cracks on natural frequency of steel frame structures. Journal of Vibration and Shock, 37(16), 73-79. [38] Zhou, J., Wang, X., & Gao, X. (2016). Effect of through-thickness crack on natural frequency of steel beam. Journal of Civil, Construction and Environmental Engineering, 1(1), 1- 7. [39] Gupta, A., & Gupta, R. K. (2020). Experimental and numerical study of vibration and stress analysis of beam with crack. Journal of The Institution of Engineers (India): Series C, 101(3), 301-309. [40] Hassan, A. R., Salam, B. A., & Islam, R. (2017). Dynamic analysis of cracked steel beam using numerical and experimental techniques. International Journal of Structural and Civil Engineering Research, 6(3), 262-267. [41] Kar, S., & Biswas, P. (2017). Dynamic behavior of a cracked beam using finite element method. International Journal of Innovative Research in Science, Engineering and Technology, 6(2), 1-9. [42] Li, H., Zhu, J., & Chen, Y. (2019). Dynamic response of cracked steel beam using ANSYS. IOP Conference Series: Materials Science and Engineering, 594, 012036. [43] Liew, M. S., Goh, K. C., & Chai, T. H. (2017). Vibration analysis of a beam with a transverse crack using finite element method. Journal of Physics: Conference Series, 914, 012024. |
en_US |