dc.identifier.citation |
[1] S. Zhao, Z. Zhang, Y. Li, "Solar thermoelectric generator: A review of materials, performance, and applications," Renewable and Sustainable Energy Reviews, vol. 108, pp. 537-552, 2019. [2] H. Rezk, E. Rezk, "Solar thermoelectric generators: A review," Renewable and Sustainable Energy Reviews, vol. 43, pp. 1331-1350, 2015. [3] C. W. Li, J. Shi, "Solar thermoelectric energy conversion," Materials Today, vol. 17, no. 8, pp. 385-392, 2014. [4] T. Mishra, G. P. Mahanwar, "Thermoelectric generator using solar energy: A review," Energy Reports, vol. 6, pp. 181-195, 2020. [5] A. I. Hochbaum, R. Chen, R. D. Delgado, et al., "Enhanced thermoelectric performance of rough silicon nanowires," Nature, vol. 451, no. 7175, pp. 163-167, 2008. [6] G. Jeffrey Snyder, E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, no. 2, pp. 105-114, 2008. [7] X. Wu, Y. Zhu, S. Yang, et al., "Nanostructured thermoelectric materials: Current research and future challenges," Progress in Materials Science, vol. 99, pp. 180-269, 2019. [8] G. Tan, B. Sun, "Recent progress and perspective in thermoelectric materials research: A personal viewpoint," Materials Today Physics, vol. 2, pp. 155-161, 2017. [9] A. Shakouri, "Recent developments in semiconductor thermoelectric physics and materials," Annual Review of Materials Research, vol. 41, pp. 399-431, 2011. [10] Z. Ren, J. P. Fleurial, "Thermoelectric materials research: Historical review and current trends," Journal of Materials Research, vol. 26, no. 7, pp. 814-819, 2011. [11] S. P. LeBlanc, G. J. Snyder, "Enhanced thermoelectric performance of rough lead telluride nanocomposites," Physical Review B, vol. 80, no. 7, article 075412, 2009. [12] J. He, T. Borca-Tasciuc, L. M. Johnson, et al., "Fabrication and characterization of textured bismuth telluride thick films with high thermoelectric performance," Journal of Applied Physics, vol. 100, no. 12, article 124907, 2006. [13] C. Dames, G. Chen, "Theoretical phonon thermal conductivity of Si and Ge nanowires," Physical Review B, vol. 75, no. 8, article 085409, 2007. [14] S. P. Beckman, R. B. Iverson, "Performance limits for flat-plate solar thermoelectric generators," Journal of Applied Physics, vol. 53, no. 7, pp. 4899-4906, 1982. [15] A. Lenert, D. M. Bierman, Y. Nam, et al., "A nanophotonic solar thermophotovoltaic device," Nature Nanotechnology, vol. 9, no. 2, pp. 126-130, 2014. 43 [16] X. Zhang, B. Yu, L. Shi, et al., "Thermophotovoltaic cells for solar energy harvesting," Nano Energy, vol. 34, pp. 124-138, 2017. [17] N. N. Saha, D. P. Fenning, "Nanophotonic designs for solar thermophotovoltaics," Nano Convergence, vol. 4, no. 1, article 22, 2017. [18] S. Huang, Z. Feng, H. Chen, et al., "A review on thermophotovoltaic energy conversion using nanoscale emitters and absorbers," Nanoscale, vol. 11, no. 16, pp. 7641-7659, 2019. [19] M. A. A. Mamun, Md Rasel Sarkar, M. Parvez, et al., "Determining the optimum tilt angle and orientation for photovoltaic (PV) systems in Bangladesh" Optimum tilt angle, vol. 11, no. 1, article 4522, 2017. [20] C. Van Hoof, "Micro power generators for ambient intelligence," Microelectronics Journal, vol. 34, no. 12, pp. 1261-1269, 2003. [21] A. Z. Sadek, R. S. A. Ribeiro, R. M. Neves, et al., "Design and optimization of a solar thermoelectric generator for energy harvesting applications," Energy Conversion and Management, vol. 150, pp. 680-692, 2017. [22] A. Kumar, G. Arora, "Solar thermoelectric energy conversion: A study on optimization of system efficiency," Energy Conversion and Management, vol. 77, pp. 555-564, 2014. [23] H. P. Wong, M. I. Mohamad, K. Sopian, et al., "Design and performance optimization of a solar thermoelectric generator," Energy Procedia, vol. 68, pp. 370-379, 2015. [24] M. Ali, M. A. Zaidi, A. Ali, et al., "Development of a solar thermoelectric generator for energy harvesting applications," Renewable and Sustainable Energy Reviews, vol. 74, pp. 867- 878, 2017. [25] H. A. Alqarni, R. Prasher, "Enhanced heat transfer for solar thermoelectric generators using nanofluids," Solar Energy, vol. 177, pp. 302-308, 2019. [26] H. A. Alqarni, R. Prasher, "Performance improvement of solar thermoelectric generators using phase change materials," Applied Energy, vol. 225, pp. 953-961, 2018. [27] C. A. Wang, D. M. Rowe, "A review of thermoelectric cooling: Materials, modeling, and applications," Applied Thermal Engineering, vol. 23, no. 4, pp. 371-392, 2003. [28] J. M. Lizardi, R. Zanón, A. Vásquez-Arenas, et al., "Analysis of thermoelectric cooling systems for photovoltaic panels," Solar Energy, vol. 171, pp. 114-122, 2018. [29] A. Khazaee, A. A. Ghahremani-Ghajar, "Performance analysis of a thermoelectric cooling system for photovoltaic modules," Renewable Energy, vol. 94, pp. 492-499, 2016. [30] G. J. Snyder, E. S. Toberer, "Complex thermoelectric materials," Nature Materials, vol. 7, no. 2, pp. 105-114, 2008. [31] T. J. Coutts, J. L. Canfield, "Photovoltaic materials, devices, and systems based on 44 CdTe," Annual Review of Materials Research, vol. 33, pp. 295-326, 2003. [32] D. M. Rowe, "Recent developments in thermoelectric refrigeration," Applied Thermal Engineering, vol. 23, no. 11, pp. 1457-1467, 2003. [33] A. Shakeri, H. Hajabdollahi, "Thermoelectric cooling of solar photovoltaic panels: A review," Renewable and Sustainable Energy Reviews, vol. 70, pp. 1287-1297, 2017. [34] M. I. Mohamad, K. Sopian, B. Yatim, et al., "Performance of a solar thermoelectric generator for small-scale applications," Energy Procedia, vol. 75, pp. 177-182, 201. |
en_US |