dc.identifier.citation |
[1] T. Birr, U. Zywietz, P. Chhantyal, B. N. Chichkov, and C. Reinhardt, “Ultrafast surface plasmon-polariton logic gates and half-adder,” Optics express, vol. 23, no. 25, pp. 31 755–31 765, 2015. [2] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Optics Express, vol. 19, no. 15, pp. 13 831–13 838, 2011. [3] Y. Chen, J. Dai, M. Yan, and M. Qiu, “Metal-insulator-metal plasmonic absorbers: influence of lattice,” Optics express, vol. 22, no. 25, pp. 30 807–30 814, 2014. [4] P. Neutens, L. Lagae, G. Borghs, and P. Van Dorpe, “Plasmon filters and resonators in metal-insulator-metal waveguides,” Optics Express, vol. 20, no. 4, pp. 3408–3423, 2012. [5] A. Akhavan, H. Ghafoorifard, S. Abdolhosseini, and H. Habibiyan, “Metal–insulator– metal waveguide-coupled asymmetric resonators for sensing and slow light applica tions,” IET Optoelectronics, vol. 12, no. 5, pp. 220–227, 2018. [6] M. A. A. Butt and N. Kazanskiy, “Enhancing the sensitivity of a standard plasmonic mim square ring resonator by incorporating the nano-dots in the cavity,” Photonics Letters of Poland, vol. 12, no. 1, pp. 1–3, 2020. [7] M. A. Butt, N. L. Kazanskiy, and S. N. Khonina, “Highly sensitive refractive index sensor based on plasmonic bow tie configuration,” Photonic sensors, vol. 10, pp. 223– 232, 2020. [8] Z. Li, K. Wen, L. Chen, L. Lei, J. Zhou, D. Zhou, Y. Fang, and B. Wu, “Control of multiple fano resonances based on a subwavelength mim coupled cavities system,” IEEE access, vol. 7, pp. 59 369–59 375, 2019. [9] X. Li, D. Wang, S. Wang, L. Yuan, J. Lei, and X. Li, “Enhanced plasmonic-induced absorption using a cascade scheme and its application as refractive-index sensor,” Photonic Sensors, vol. 10, pp. 162–170, 2020. REFERENCES 67 [10] B. Li, H. Sun, H. Zhang, Y. Li, J. Zang, X. Cao, X. Zhu, X. Zhao, and Z. Zhang, “Re fractive index sensor based on the fano resonance in metal–insulator–metal waveg uides coupled with a whistle-shaped cavity,” Micromachines, vol. 13, no. 10, p. 1592, 2022. [11] L. Liu, Z. Hu, M. Ye, Z. Yu, C. Ma, and J. Li, “On-chip refractive index sensor with ultra-high sensitivity based on sub-wavelength grating racetrack microring resonators and vernier effect,” IEEE Photonics Journal, vol. 14, no. 5, pp. 1–7, 2022. [12] Y. Qi, Y. Wang, X. Zhang, C. Liu, B. Hu, Y. Bai, and X. Wang, “A theoretical study of optically enhanced transmission characteristics of subwavelength metal y-shaped arrays and its application on refractive index sensor,” Results in Physics, vol. 15, p. 102495, 2019. [13] A. Rashed, B. Gudulluoglu, H. Yun, M. Habib, I. Boyaci, S. Hong, E. Ozbay, and H. Caglayan, “Highly-sensitive refractive index sensing by near-infrared metatronic nanocircuits,” ScieNtific REPORtS, vol. 8, no. 1, p. 11457, 2018. [14] X. Wang, J. Zhu, X. Wen, X. Wu, Y. Wu, Y. Su, H. Tong, Y. Qi, and H. Yang, “Wide range refractive index sensor based on a coupled structure of au nanocubes and au film,” Optical Materials Express, vol. 9, no. 7, pp. 3079–3088, 2019. [15] J. Yu, J. Zhu, S. Ye, and X. Wang, “Ultra-wide sensing range plasmonic refractive index sensor based on a two-dimensional circular-hole grating engraved on a gold film,” Results in Physics, vol. 26, p. 104396, 2021. [16] J. Zhu and N. Li, “Mim waveguide structure consisting of a semicircular resonant cavity coupled with a key-shaped resonant cavity,” Optics express, vol. 28, no. 14, pp. 19 978–19 987, 2020. [17] J. Chen, X. Lian, M. Zhao, and C. Xie, “Multimode fano resonances sensing based on a non-through mim waveguide with a square split-ring resonance cavity,” Biosensors, vol. 12, no. 5, p. 306, 2022. [18] X. Ren, K. Ren, and C. Ming, “Self-reference refractive index sensor based on in dependently controlled double resonances in side-coupled u-shaped resonators,” Sen sors, vol. 18, no. 5, p. 1376, 2018. [19] T. Xu, Z. Geng, and Y. Su, “A potential plasmonic biosensor based asymmetric metal ring cavity with extremely narrow linewidth and high sensitivity,” Sensors, vol. 21, no. 3, p. 752, 2021. REFERENCES 68 [20] X. Yang, E. Hua, M. Wang, Y. Wang, F. Wen, and S. Yan, “Fano resonance in a mim waveguide with two triangle stubs coupled with a split-ring nanocavity for sensing application,” Sensors, vol. 19, no. 22, p. 4972, 2019. [21] X. Zhang, S. Yan, J. Liu, Y. Ren, Y. Zhang, and L. Shen, “Refractive index sensor based on a metal-insulator-metal bus waveguide coupled with a u-shaped ring res onator,” Micromachines, vol. 13, no. 5, p. 750, 2022. [22] Z. Zhang, J. Yang, X. He, J. Zhang, J. Huang, D. Chen, and Y. Han, “Plasmonic refractive index sensor with high figure of merit based on concentric-rings resonator,” Sensors, vol. 18, no. 1, p. 116, 2018. [23] A. D. Rakic, A. B. Djuri ´ siˇ c, J. M. Elazar, and M. L. Majewski, “Optical properties ´ of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [24] M. C. Roco, M. C. Hersam, C. A. Mirkin, E. L. Hu, M. Brongersma, and A. Baca, “Applications: nanophotonics and plasmonics,” Nanotechnology Research Directions for Societal Needs in 2020: Retrospective and Outlook, pp. 417–444, 2011. [25] S. A. Maier and S. A. Maier, “Surface plasmon polaritons at metal/insulator inter faces,” Plasmonics: Fundamentals and Applications, pp. 21–37, 2007. [26] S. M. N. O. and S. Nelatury, Elements of electromagnetics. Oxford University Press, 2021. [27] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “A highly sensitive plasmonic refrac tive index sensor based on triangular resonator,” Optics Communications, vol. 483, p. 126634, 2021. [28] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE J. Sel. Top. Quantum Electron., vol. 12, no. 6, pp. 1671–1677, Nov. 2006. [29] W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength op tics,” nature, vol. 424, no. 6950, pp. 824–830, 2003. [30] B. Luff, R. Harris, J. Wilkinson, R. Wilson, and D. Schiffrin, “Integrated-optical di rectional coupler biosensor,” Optics Letters, vol. 21, no. 8, pp. 618–620, 1996. [31] J. Park, H. Kim, and B. Lee, “High order plasmonic bragg reflection in the metal insulator-metal waveguide bragg grating,” Optics express, vol. 16, no. 1, pp. 413–425, 2008. REFERENCES 69 [32] M. Akhlaghi and M. Kaboli, “Investigating the optical xnor gate using plasmonic nano-rods,” Photonics and Nanostructures-Fundamentals and Applications, vol. 19, pp. 24–30, 2016. [33] Y.-Y. Xie, C. He, J.-C. Li, T.-T. Song, Z.-D. Zhang, and Q.-R. Mao, “Theoretical investigation of a plasmonic demultiplexer in mim waveguide crossing with multiple side-coupled hexagonal resonators,” IEEE Photonics Journal, vol. 8, no. 5, pp. 1–12, 2016. [34] X.-P. Jin, X.-G. Huang, J. Tao, X.-S. Lin, and Q. Zhang, “A novel nanometeric plas monic refractive index sensor,” IEEE transactions on nanotechnology, vol. 9, no. 2, pp. 134–137, 2010. [35] R. H. Sagor, M. F. Hassan, S. Sharmin, T. Z. Adry, and M. A. R. Emon, “Numerical in vestigation of an optimized plasmonic on-chip refractive index sensor for temperature and blood group detection,” Results in Physics, vol. 19, p. 103611, 2020. [36] M. Butt, S. Khonina, and N. Kazanskiy, “Plasmonic refractive index sensor based on metal–insulator-metal waveguides with high sensitivity,” Journal of Modern Optics, vol. 66, no. 9, pp. 1038–1043, 2019. [37] Y. Binfeng, H. Guohua, Z. Ruohu, and C. Yiping, “Design of a compact and high sen sitive refractive index sensor base on metal-insulator-metal plasmonic bragg grating,” Optics Express, vol. 22, no. 23, pp. 28 662–28 670, 2014. [38] M. Pi, H. Zhao, C. Li, Y. Min, Z. Peng, J. Ji, Y. Huang, F. Song, L. Liang, Y. Zhang et al., “Mid-infrared chalcogenide slot waveguide plasmonic resonator sensor embed ded with au nanorods for surface-enhanced infrared absorption spectroscopy,” Results in Physics, vol. 42, p. 106005, 2022. [39] H. Sahoo, “Fluorescent labeling techniques in biomolecules: a flashback,” RSC ad vances, vol. 2, no. 18, pp. 7017–7029, 2012. [40] S. Khani, M. Danaie, and P. Rezaei, “Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators,” Optics Communications, vol. 420, pp. 147–156, 2018. [41] R. Malureanu and A. Lavrinenko, “Ultra-thin films for plasmonics: a technology overview,” Nanotechnology Reviews, vol. 4, no. 3, pp. 259–275, 2015. [42] H. H. Goldstine and A. Goldstine, “The electronic numerical integrator and computer (eniac),” in The Origins of Digital Computers: Selected Papers. Springer, 1946, pp. 359–373. REFERENCES 70 [43] T. Haigh, P. Priestley, and C. Rope, ENIAC in Action: Making and Remaking the Modern Computer, ser. History of Computing. MIT Press, 2016. [Online]. Available: https://books.google.com.bd/books?id= oqBCwAAQBAJ [44] D. A. B. Miller and H. M. Ozaktas, “Limit to the bit-rate capacity of electrical in terconnects from the aspect ratio of the system architecture,” Journal of parallel and distributed computing, vol. 41, no. 1, pp. 42–52, 1997. [45] S. Esener, “Implementation and prospects for chip-to-chip free-space optical in terconnects,” in International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), 2001, pp. 23.5.1–23.5.4. [46] D. N. Batchelder and J. P. Willson, “Optical surface plasmon sensor device,” Jul. 4 1989, uS Patent 4,844,613. [47] R. Garabedian, C. Gonzalez, J. Richards, A. Knoesen, R. Spencer, S. Collins, and R. Smith, “Microfabricated surface plasmon sensing system,” Sensors and Actuators A: Physical, vol. 43, no. 1-3, pp. 202–207, 1994. [48] S. Nelson, K. S. Johnston, and S. S. Yee, “High sensitivity surface plasmon resonace sensor based on phase detection,” Sensors and actuators B: Chemical, vol. 35, no. 1-3, pp. 187–191, 1996. [49] J. Homola, J. Ctyrok ˇ y, M. Skalsk ` y, J. Hradilova, and P. Kol ` a´ˇrova, “A surface plas- ´ mon resonance based integrated optical sensor,” Sensors and Actuators B: Chemical, vol. 39, no. 1-3, pp. 286–290, 1997. [50] M. W. Foster, “Surface plasmon resonance sensor and methods for the utilization thereof,” Jan. 16 1996, uS Patent 5,485,277. [51] J. Ctyrok ˇ y, J. Homola, P. Lambeck, S. Musa, H. Hoekstra, R. Harris, J. Wilkinson, ` B. Usievich, and N. Lyndin, “Theory and modelling of optical waveguide sensors utilising surface plasmon resonance,” Sensors and Actuators B: Chemical, vol. 54, no. 1-2, pp. 66–73, 1999. [52] J. J. Mock, D. R. Smith, and S. Schultz, “Local refractive index dependence of plas mon resonance spectra from individual nanoparticles,” Nano letters, vol. 3, no. 4, pp. 485–491, 2003. [53] E. M. Larsson, J. Alegret, M. Kall, and D. S. Sutherland, “Sensing characteristics of ¨ nir localized surface plasmon resonances in gold nanorings for application as ultra sensitive biosensors,” Nano letters, vol. 7, no. 5, pp. 1256–1263, 2007. REFERENCES 71 [54] A. G. Brolo, R. Gordon, B. Leathem, and K. L. Kavanagh, “Surface plasmon sensor based on the enhanced light transmission through arrays of nanoholes in gold films,” Langmuir, vol. 20, no. 12, pp. 4813–4815, 2004. [55] A. Lesuffleur, H. Im, N. C. Lindquist, and S.-H. Oh, “Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors,” Applied Physics Letters, vol. 90, no. 24, 2007. [56] E. J. R. Vesseur, R. De Waele, H. Lezec, H. Atwater, F. J. Garc´ıa de Abajo, and A. Polman, “Surface plasmon polariton modes in a single-crystal au nanoresonator fabricated using focused-ion-beam milling,” Applied Physics Letters, vol. 92, no. 8, 2008. [57] Y. Fang and M. Sun, “Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits,” Light: Science & Applications, vol. 4, no. 6, pp. e294–e294, 2015. [58] P. Saeidi, B. Jakoby, G. Puhringer, A. Tortschanoff, G. Stocker, F. Dubois, J. Spet- ¨ tel, T. Grille, and R. Jannesari, “Designing mid-infrared gold-based plasmonic slot waveguides for co2-sensing applications,” Sensors, vol. 21, no. 8, p. 2669, 2021. [59] J. Becker, A. Trugler, A. Jakab, U. Hohenester, and C. S ¨ onnichsen, “The optimal ¨ aspect ratio of gold nanorods for plasmonic bio-sensing,” Plasmonics, vol. 5, pp. 161– 167, 2010. [60] Y.-F. C. Chau, “Enhanced plasmonic waveguide sensing performance with a semicircular-ring resonator,” Micro and Nanostructures, vol. 174, p. 207469, 2023. [61] Y.-F. Chou Chau, “Multiple-mode bowtie cavities for refractive index and glucose sensors working in visible and near-infrared wavelength ranges,” Plasmonics, vol. 16, no. 5, pp. 1633–1644, 2021. [62] Y.-F. C. Chau, “Mid-infrared sensing properties of a plasmonic metal–insulator– metal waveguide with a single stub including defects,” Journal of Physics D: Applied Physics, vol. 53, no. 11, p. 115401, 2020. [63] K. S. Rashid, I. Tathfif, A. A. Yaseer, M. F. Hassan, and R. H. Sagor, “Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of mul tiple analytes,” Optics Express, vol. 29, no. 23, pp. 37 541–37 554, 2021. [64] I. Tathfif, K. S. Rashid, A. A. Yaseer, and R. H. Sagor, “Alternative material titanium nitride based refractive index sensor embedded with defects: An emerging solution in sensing arena,” Results in Physics, vol. 29, p. 104795, 2021. REFERENCES 72 [65] M. A. Butt, “Numerical assessment of a metal-insulator-metal waveguide-based plas monic sensor system for the recognition of tuberculosis in blood plasma,” Microma chines, vol. 14, no. 4, p. 729, 2023. [66] G. Raschke, S. Kowarik, T. Franzl, C. Sonnichsen, T. Klar, J. Feldmann, A. Nichtl, ¨ and K. Kurzinger, “Biomolecular recognition based on single gold nanoparticle light ¨ scattering,” Nano letters, vol. 3, no. 7, pp. 935–938, 2003. [67] A. D. McFarland and R. P. Van Duyne, “Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity,” Nano letters, vol. 3, no. 8, pp. 1057–1062, 2003. [68] C. L. Baciu, J. Becker, A. Janshoff, and C. Sonnichsen, “Protein–membrane inter action probed by single plasmonic nanoparticles,” Nano Letters, vol. 8, no. 6, pp. 1724–1728, 2008. [69] K.-S. Lee and M. A. El-Sayed, “Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition,” The Journal of Physical Chemistry B, vol. 110, no. 39, pp. 19 220–19 225, 2006. [70] Y. Khalavka, J. Becker, and C. Sonnichsen, “Synthesis of rod-shaped gold nanorattles with improved plasmon sensitivity and catalytic activity,” Journal of the American Chemical Society, vol. 131, no. 5, pp. 1871–1875, 2009. [71] N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sonnichsen, and H. Giessen, “Planar metamaterial analogue of electromagnetically induced trans parency for plasmonic sensing,” Nano letters, vol. 10, no. 4, pp. 1103–1107, 2010. [72] J. Becker, I. Zins, A. Jakab, Y. Khalavka, O. Schubert, and C. Sonnichsen, “Plasmonic ¨ focusing reduces ensemble linewidth of silver-coated gold nanorods,” Nano letters, vol. 8, no. 6, pp. 1719–1723, 2008. [73] Y. Tang, Z. Zhang, R. Wang, Z. Hai, C. Xue, W. Zhang, and S. Yan, “Refractive index sensor based on fano resonances in metal-insulator-metal waveguides coupled with resonators,” Sensors, vol. 17, no. 4, p. 784, 2017. [74] X. Zhang, Y. Qi, P. Zhou, H. Gong, B. Hu, and C. Yan, “Refractive index sensor based on fano resonances in plasmonic waveguide with dual side-coupled ring resonators,” Photonic sensors, vol. 8, pp. 367–374, 2018. [75] M. F. Hassan, M. M. Hasan, M. Radoan, and R. H. Sagor, “Design and performance analysis of an ultra-compact nano-plasmonic refractive index sensor,” in 2020 8th International Electrical Engineering Congress (iEECON). IEEE, 2020, pp. 1–5. [76] Y. Chowdhury, “Plasmonic waveguides: design and comparative study,” 2011. REFERENCES 73 [77] Y.-F. Chou Chau, T. Y. Ming, C.-T. Chou Chao, R. Thotagamuge, M. R. R. Kooh, H. J. Huang, C. M. Lim, and H.-P. Chiang, “Significantly enhanced coupling effect and gap plasmon resonance in a mim-cavity based sensing structure,” Scientific Reports, vol. 11, no. 1, p. 18515, 2021. [78] S. E. El-Zohary, A. Azzazi, H. Okamoto, T. Okamoto, M. Haraguchi, and M. A. Swillam, “Resonance-based integrated plasmonic nanosensor for lab-on-chip appli cations,” Journal of Nanophotonics, vol. 7, no. 1, pp. 073 077–073 077, 2013. [79] A. Rakib, A. T. B. Siddique, M. S. Sakib, M. O. Faruque, and R. H. Sagor, “A numeri cal analysis of a highly sensitive hexagonal plasmonic refractive index sensor,” Optics Communications, vol. 530, p. 129205, 2023. [80] J. Zhang, X. Wang, J. Zhu, T. Chen, L. Zhang, H. Yang, C. Tang, Y. Qi, and J. Yu, “Metal–insulator–metal waveguide structure coupled with t-type and ring resonators for independent and tunable multiple fano resonance and refractive index sensing,” Optics Communications, vol. 528, p. 128993, 2023. [81] S. Khani and M. Afsahi, “Optical refractive index sensors based on plasmon-induced transparency phenomenon in a plasmonic waveguide coupled to stub and nano-disk resonators,” Plasmonics, vol. 18, no. 1, pp. 255–270, 2023. [82] H. Guo, Z. Chen, J. Qi, M. Jiang, J. Chen, Y. Li, and Q. Sun, “Ultra-high figure of merit refractive index sensor based on concentric ring and disk resonator,” Journal of Optics, vol. 52, no. 1, pp. 120–127, 2023. [83] H. Bensalah, A. Hocini, H. Bahri, D. Khedrouche, S. Ingebrandt, and V. Pachauri, “A plasmonic refractive index sensor with high sensitivity and its application for temper ature and detection of biomolecules,” Journal of Optics, pp. 1–12, 2022. [84] S. Rohimah, H. Tian, J. Wang, J. Chen, J. Li, X. Liu, J. Cui, Q. Xu, and Y. Hao, “Fano resonance in the plasmonic structure of mim waveguide with r-shaped resonator for refractive index sensor,” Plasmonics, vol. 17, no. 4, pp. 1681–1689, 2022. [85] S. Tavana and S. Bahadori-Haghighi, “Visible-range double fano resonance metal– insulator-metal plasmonic waveguide for optical refractive index sensing,” Plasmon ics, vol. 17, no. 6, pp. 2441–2449, 2022. [86] V. Najjari, S. Mirzanejhad, and A. Ghadi, “Plasmonic refractive index sensor and plas monic bandpass filter including graded 4-step waveguide based on fano resonances,” Plasmonics, vol. 17, no. 4, pp. 1809–1817, 2022. REFERENCES 74 [87] N. Saha, G. Brunetti, A. Kumar, M. N. Armenise, and C. Ciminelli, “Highly sensitive refractive index sensor based on polymer bragg grating: A case study on extracellular vesicles detection,” Biosensors, vol. 12, no. 6, p. 415, 2022. [88] Q. Shangguan, Y. Zhao, Z. Song, J. Wang, H. Yang, J. Chen, C. Liu, S. Cheng, W. Yang, and Z. Yi, “High sensitivity active adjustable graphene absorber for refrac tive index sensing applications,” Diamond and Related Materials, vol. 128, p. 109273, 2022. [89] S. K. Patel, N. Solanki, S. Charola, J. Parmar, R. Zakaria, O. S. Faragallah, M. M. Eid, and A. N. Z. Rashed, “Graphene based highly sensitive refractive index sensor using double split ring resonator metasurface,” Optical and Quantum Electronics, vol. 54, no. 3, p. 203, 2022. [90] R. H. Sagor, M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, “Highly sen sitive refractive index sensor optimized for blood group sensing utilizing the fano resonance,” Applied Nanoscience, vol. 11, pp. 521–534, 2021. [91] R. Al Mahmud, M. O. Faruque, and R. H. Sagor, “Plasmonic refractive index sensor based on ring-type pentagonal resonator with high sensitivity,” Plasmonics, vol. 16, pp. 873–880, 2021. [92] X. Wang, J. Zhu, Y. Xu, Y. Qi, L. Zhang, H. Yang, and Z. Yi, “A novel plasmonic re fractive index sensor based on gold/silicon complementary grating structure,” Chinese Physics B, vol. 30, no. 2, p. 024207, 2021. [93] J. Zhu and C. Wu, “Optical refractive index sensor with fano resonance based on original mim waveguide structure,” Results in Physics, vol. 21, p. 103858, 2021. [94] S. Khani and M. Hayati, “An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and mim waveguide,” Superlattices and Microstructures, vol. 156, p. 106970, 2021. [95] S. Asgari, S. Pooretemad, and N. Granpayeh, “Plasmonic refractive index sen sor based on a double concentric square ring resonator and stubs,” Photonics and Nanostructures-Fundamentals and Applications, vol. 42, p. 100857, 2020. [96] Y. Fang, K. Wen, Z. Li, B. Wu, and Z. Guo, “Plasmonic refractive index sensor with multi-channel fano resonances based on mim waveguides,” Modern Physics Letters B, vol. 34, no. 16, p. 2050173, 2020. [97] N. Amoosoltani, N. Yasrebi, A. Farmani, and A. Zarifkar, “A plasmonic nano biosensor based on two consecutive disk resonators and unidirectional reflectionless propagation effect,” IEEE Sensors Journal, vol. 20, no. 16, pp. 9097–9104, 2020. REFERENCES 75 [98] M. Butt, S. Khonina, and N. Kazanskiy, “An array of nano-dots loaded mim square ring resonator with enhanced sensitivity at nir wavelength range,” Optik, vol. 202, p. 163655, 2020. [99] A. Alipour, A. Mir, and A. Farmani, “Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor,” Optics & Laser Technology, vol. 127, p. 106201, 2020. [100] R. El Haffar, A. Farkhsi, and O. Mahboub, “Optical properties of mim plasmonic waveguide with an elliptical cavity resonator,” Applied Physics A, vol. 126, pp. 1–10, 2020. [101] M. Bazgir, M. Jalalpour, F. B. Zarrabi, and A. S. Arezoomand, “Design of an optical switch and sensor based on a mim coupled waveguide using a dna composite,” Journal of Electronic Materials, vol. 49, pp. 2173–2178, 2020. [102] G. Qiu, Z. Gai, Y. Tao, J. Schmitt, G. A. Kullak-Ublick, and J. Wang, “Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syn drome coronavirus 2 detection,” ACS nano, vol. 14, no. 5, pp. 5268–5277, 2020. [103] Y. Zhang, Y. Kuang, Z. Zhang, Y. Tang, J. Han, R. Wang, J. Cui, Y. Hou, and W. Liu, “High-sensitivity refractive index sensors based on fano resonance in the plasmonic system of splitting ring cavity-coupled mim waveguide with tooth cavity,” Applied Physics A, vol. 125, pp. 1–5, 2019. [104] Y. Wen, Y. Sun, C. Deng, L. Huang, G. Hu, B. Yun, R. Zhang, and Y. Cui, “High sensitivity and fom refractive index sensing based on fano resonance in all-grating racetrack resonators,” Optics Communications, vol. 446, pp. 141–146, 2019. [105] S. Asgari and N. Granpayeh, “Tunable mid-infrared refractive index sensor composed of asymmetric double graphene layers,” IEEE sensors Journal, vol. 19, no. 14, pp. 5686–5691, 2019. [106] R. Zafar, S. Nawaz, G. Singh, A. d’Alessandro, and M. Salim, “Plasmonics-based re fractive index sensor for detection of hemoglobin concentration,” IEEE Sensors Jour nal, vol. 18, no. 11, pp. 4372–4377, 2018. [107] M. J. Al Mahmod, R. Hyder, and M. Z. Islam, “A highly sensitive metal–insulator– metal ring resonator-based nanophotonic structure for biosensing applications,” IEEE Sensors Journal, vol. 18, no. 16, pp. 6563–6568, 2018. [108] X. Yi, J. Tian, and R. Yang, “Tunable fano resonance in plasmonic mdm waveguide with a square type split-ring resonator,” Optik, vol. 171, pp. 139–148, 2018. REFERENCES 76 [109] S. Ghorbani, M. A. Dashti, and M. Jabbari, “Plasmonic nano-sensor based on metal dielectric-metal waveguide with the octagonal cavity ring,” Laser Physics, vol. 28, no. 6, p. 066208, 2018. [110] M. F. Hassan, R. H. Sagor, M. R. Amin, M. R. Islam, and M. S. Alam, “Point of care detection of blood electrolytes and glucose utilizing nano-dot enhanced plasmonic biosensor,” IEEE Sensors Journal, vol. 21, no. 16, pp. 17 749–17 757, 2021. [111] S. A. Maier, “Plasmonics: The promise of highly integrated optical devices,” IEEE Journal of selected topics in Quantum Electronics, vol. 12, no. 6, pp. 1671–1677, 2006. [112] H. Raether, “Surface plasmons on smooth surfaces,” Surface plasmons on smooth and rough surfaces and on gratings, pp. 4–39, 2006. [113] L. Yang, P. Li, H. Wang, and Z. Li, “Surface plasmon polariton waveguides with subwavelength confinement,” Chinese Physics B, vol. 27, no. 9, p. 094216, 2018. [114] D. G. Rabus, C. Sada, D. G. Rabus, and C. Sada, “Ring resonators: Theory and mod eling,” Integrated Ring Resonators: A Compendium, pp. 3–46, 2020. [115] C. Wu, H. Ding, T. Huang, X. Wu, B. Chen, K. Ren, and S. Fu, “Plasmon-induced transparency and refractive index sensing in side-coupled stub-hexagon resonators,” Plasmonics, vol. 13, pp. 251–257, 2018. [116] J.-M. Jin, The finite element method in electromagnetics. John Wiley & Sons, 2015. [117] N. Kazanskiy, M. Butt, and S. Khonina, “Nanodots decorated mim semi-ring res onator cavity for biochemical sensing applications,” Photonics and Nanostructures Fundamentals and Applications, vol. 42, p. 100836, 2020. [118] D. G. Rabus, Integrated ring resonators. Springer, 2007. [119] S. Arscott and D. Troadec, “Electrospraying from nanofluidic capillary slot,” Applied Physics Letters, vol. 87, no. 13, p. 134101, 2005. [120] A. Vorobyev and C. Guo, “Metal pumps liquid uphill,” Applied Physics Letters, vol. 94, no. 22, p. 224102, 2009. [121] A. Boltasseva, “Plasmonic components fabrication via nanoimprint,” Journal of Op tics A: Pure and Applied Optics, vol. 11, no. 11, p. 114001, 2009. [122] S. Y. Chou and P. R. Krauss, “Imprint lithography with sub-10 nm feature size and high throughput,” Microelectronic Engineering, vol. 35, no. 1-4, pp. 237–240, 1997. REFERENCES 77 [123] U. Plachetka, M. Bender, A. Fuchs, B. Vratzov, T. Glinsner, F. Lindner, and H. Kurz, “Wafer scale patterning by soft uv-nanoimprint lithography,” Microelectronic Engi neering, vol. 73, pp. 167–171, 2004. [124] F. Hamouda, G. Barbillon, F. Gaucher, and B. Bartenlian, “Sub-200 nm gap electrodes by soft uv nanoimprint lithography using polydimethylsiloxane mold without external pressure,” Journal of Vacuum Science & Technology B, Nanotechnology and Micro electronics: Materials, Processing, Measurement, and Phenomena, vol. 28, no. 1, pp. 82–85, 2010. [125] S.-W. Lee, K.-S. Lee, J. Ahn, J.-J. Lee, M.-G. Kim, and Y.-B. Shin, “Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithogra phy,” ACS nano, vol. 5, no. 2, pp. 897–904, 2011. [126] M. Danaie and A. Shahzadi, “Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped si resonator,” Plasmonics, vol. 14, no. 6, pp. 1453–1465, 2019. [127] S. Kamada, T. Okamoto, S. E. El-Zohary, and M. Haraguchi, “Design optimization and fabrication of mach-zehnder interferometer based on mim plasmonic waveg uides,” Optics Express, vol. 24, no. 15, pp. 16 224–16 231, 2016. [128] F. Stade, A. Heeren, M. Fleischer, and D. Kern, “Fabrication of metallic nanostruc tures for investigating plasmon-induced field enhancement,” Microelectronic engi neering, vol. 84, no. 5-8, pp. 1589–1592, 2007. [129] A. Campos, A. Arbouet, J. Martin, D. Gerard, J. Proust, J. Plain, and M. Kociak, “Plasmonic breathing and edge modes in aluminum nanotriangles,” Acs Photonics, vol. 4, no. 5, pp. 1257–1263, 2017. [130] R. Curry, B. Dickson, and I. Yashayaev, “A change in the freshwater balance of the atlantic ocean over the past four decades,” Nature, vol. 426, no. 6968, pp. 826–829, 2003. [131] X. Quan and E. S. Fry, “Empirical equation for the index of refraction of seawater,” Applied optics, vol. 34, no. 18, pp. 3477–3480, 1995. [132] G. C. Brown, “Total cell protein concentration as an evolutionary constraint on the metabolic control distribution in cells,” Journal of theoretical biology, vol. 153, no. 2, pp. 195–203, 1991. [133] E. Alessio, R. S. Bonadio, L. Buson, F. Chemello, and S. Cagnin, “A single cell but many different transcripts: a journey into the world of long non-coding rnas,” International journal of molecular sciences, vol. 21, no. 1, p. 302, 2020. REFERENCES 78 [134] R. Barer and S. Joseph, “Refractometry of living cells: Part i. basic principles,” Jour nal of Cell Science, vol. 3, no. 32, pp. 399–423, 1954. [135] A. Jahanban-Esfahlan, A. Ostadrahimi, R. Jahanban-Esfahlan, L. Roufegarinejad, M. Tabibiazar, and R. Amarowicz, “Recent developments in the detection of bovine serum albumin,” International journal of biological macromolecules, vol. 138, pp. 602–617, 2019. [136] G. L. Francis, “Albumin and mammalian cell culture: implications for biotechnology applications,” Cytotechnology, vol. 62, no. 1, pp. 1–16, 2010. [137] A. C. H and A. Ravindran, “Bsa nanoparticle loaded atorvastatin calcium-a new facet for an old drug,” PloS one, vol. 9, no. 2, p. e86317, 2014. [138] M. M. Pereira, S. N. Pedro, M. V. Quental, A. S. Lima, J. A. Coutinho, and M. G. ´ Freire, “Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium-and ammonium-based ionic liquids,” Journal of biotechnology, vol. 206, pp. 17–25, 2015. [139] C.-Y. Tan and Y.-X. Huang, “Dependence of refractive index on concentration and temperature in electrolyte solution, polar solution, nonpolar solution, and protein so lution,” Journal of Chemical & Engineering Data, vol. 60, no. 10, pp. 2827–2833, 2015. [140] H. Liu, H. Li, Q. Wang, M. Wang, Y. Ding, C. Zhu, and D. Cheng, “Temperature compensated magnetic field sensor based on surface plasmon resonance and direc tional resonance coupling in a d-shaped photonic crystal fiber,” Optik, vol. 158, pp. 1402–1409, 2018. [141] M. Matiatou, P. Giannios, S. Koutsoumpos, K. G. Toutouzas, G. C. Zografos, and K. Moutzouris, “Data on the refractive index of freshly-excised human tissues in the visible and near-infrared spectral range,” Results in Physics, vol. 22, p. 103833, 2021. [142] M. Rahmatiyar, M. Afsahi, and M. Danaie, “Design of a refractive index plasmonic sensor based on a ring resonator coupled to a mim waveguide containing tapered de fects,” Plasmonics, vol. 15, pp. 2169–2176, 2020. [143] M. A. Butt, A. Kazmierczak, N. L. Kazanskiy, and S. N. Khonina, “Metal-insulator- ´ metal waveguide-based racetrack integrated circular cavity for refractive index sens ing application,” Electronics, vol. 10, no. 12, p. 1419, 2021. [144] Y.-F. Chou Chau, C.-T. Chou Chao, H. J. Huang, M. R. R. Kooh, N. T. R. N. Ku mara, C. M. Lim, and H.-P. Chiang, “Ultrawide bandgap and high sensitivity of a REFERENCES 79 plasmonic metal-insulator-metal waveguide filter with cavity and baffles,” Nanomate rials, vol. 10, no. 10, p. 2030, 2020. [145] M. R. Rakhshani and M. A. Mansouri-Birjandi, “Engineering hexagonal array of nanoholes for high sensitivity biosensor and application for human blood group de tection,” IEEE Transactions on Nanotechnology, vol. 17, no. 3, pp. 475–481, 2018. [146] Y. M. Tan, C.-T. C. Chao, M. R. R. Kooh, H. J. Huang, R. Thotagamuge, C. M. Lim, H.-P. Chiang, and Y.-F. C. Chau, “Mid infrared sensing structure based on a metal–insulator–metal waveguides with a triangular-shaped resonator,” Optics Com munications, vol. 516, p. 128282, 2022 |
en_US |