Comprehensive Study of Refractive Index Sensors for Bio-Sensing Applications

Show simple item record

dc.contributor.author Treena, Tahmina Tabassum
dc.contributor.author Munim, Nasir Muhammad
dc.contributor.author Amin, Musarrat
dc.date.accessioned 2024-01-16T05:48:07Z
dc.date.available 2024-01-16T05:48:07Z
dc.date.issued 2023-05-30
dc.identifier.citation [1] Munim, Nasir Muhammad, et al. "Design and analysis of an ultra-high sensitive and tunable metal-insulator-metal waveguide-coupled octagonal ring resonator utilizing gold nanorods." Sensing and Bio-Sensing Research, vol. 38, pp. 100529, 2022. [2] Mohammad Rakibul Islam, et al. “Peak Amplitude Difference Sensitivity (PADS): An Interrogation Technique for PCF-SPR Sensors Using Symmetrical Arrays of Plasmonic Layers,” vol. 48, 2023, pp. 106434, https://doi.org/10.1016/j.rinp.2023.106434. [3] Khan, M.R.H.; Chowdhury, A.A.; Islam, M.R.; Hosen, M.S.; Mim, M.H.; Nishat, M.M, “Wave-Shaped Microstructure Cancer Detection Sensor in Terahertz Band: Design and Analysis,” Appl. Sci., vol. 13, pp. 5784, 2023. https://doi.org/10.3390/app13095784 [4] Islam, M.R., Moazzam, E., Khan, R.L., Islam, R. and Tasnim, Z., 2023, “Analysis of a highly temperature-sensitive gold-coated plasmonic biosensor for analyte detection,” Ain Shams Engineering Journal, p.102206, 2023. [5] Rahman, M., Islam, M.R. Siraz, S. and Anzum, M.S., “A high crosstalk modified D-shaped single-polarization filter for S and U band optical communication”, Optical and Quantum Electronics, vol. 55, no.3, p.276, 2023. [6] Islam, Nazrul, Md Faizul Huq Arif, Mohammad Abu Yousuf, and Sayed Asaduzzaman, "Highly sensitive open channel based pcf-spr sensor for analyte refractive index sensing," Results in Physics, vol. 46, pp. 106266, 2023. [7] Al Mahmud, Md Abdullah, Mohammad Rakibul Islam, A. N. M. Iftekher, Md Moshiur Rahman, and Farhana Akter Mou, "Design and numerical analysis of a porous core photonic crystal fiber for refractometric THz sensing," Microsystem Technologies, vol. 29, no. 1, pp. 115- 126, 2023. [8] Islam, Mohammad Rakibul, Md Moinul Islam Khan, Ahmed Mujtaba Al Naser, Fariha Mehjabin, Fatema Zerin Jaba, Jubair Alam Chowdhury, Fariha Anzum, and Mohibul Islam, "Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing," Optical and Quantum Electronics, vol. 54, no. 9, pp. 563, 2022. [9] Rahman, Md Moshiur, Farhana Akter Mou, Mohammed Imamul Hassan Bhuiyan, Md Abdullah Al Mahmud, and Mohammad Rakibul Islam, "Design and characterization of a photonic 83 crystal fiber for improved THz wave propagation and analytes sensing," Optical and Quantum Electronics, vol. 54, no. 10, pp. 669, 2022. [10] Islam, Mohammad Rakibul, Ahmed Mujtaba Al Naser, Fatema Zerin Jaba, Fariha Anzum, Abu Nayeem Mohammad Iftekher, Md Rezaul Hoque Khan, and Mirza Muntasir Nishat, "Design of a hexagonal outlined porous cladding with vacant core photonic crystal fibre biosensor for cyanide detection at THz regime," IET Optoelectronics, vol. 16, no. 4, pp. 160-173, 2022. [11] R. A. Wahsheh, Z. Lu, and M. A. Abushagur, “Nanoplasmonic couplers and splitters,” Optics Express, vol. 17, no. 21, pp. 19033–19040, 2009. [12] Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, H. Li, and X. Luo, “A plasmonic splitter based on slot cavity,” Optics Express, vol. 19, no. 15, p. 13831, 2011. [13] M. Matsuo, H. Yabuki, and M. Makimoto, “Dual-mode stepped-impedance ring resonator for bandpass filter applications,” IEEE Transactions on Microwave Theory and Techniques, vol. 49, no. 7, pp. 1235–1240, 2001. [14] Islam, Mohammad Rakibul, Kazi Rakibul Hasan, Md Moinul Islam Khan, Abu Nayeem Mohammad Iftekher, Fariha Mehjabin, Md Julkar Nayen, Jubair Alam Chowdhury, Saimon Bin Islam, and Mohibul Islam, "Design of a Dual Cluster and Dual Array-Based PCF-SPR Biosensor with Ultra-high WS and FOM," Plasmonics, vol. 17, no. 3, pp. 1171-1182, 2022. [15] M. F. Hassan, R. H. Sagor, I. Tathfif, K. S. Rashid, and M. Radoan, “An optimized dielectric metal-dielectric refractive index nanosensor,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1461– 1469, 2020. [16] M. Butt, S. Khonina, and N. Kazanskiy, “Hybrid plasmonic waveguide-assisted metal– insulator–metal ring resonator for refractive index sensing,” Journal of Modern Optics, vol. 65, no. 9, pp. 1135–1140, 2018. [17] R. Moreira, F. Chenlo, and A. Saint-Olympe, “Kinematic viscosity of aqueous solutions of ethanol and glucose in the range of temperatures from 20 to 45 c,” International Journal of Food Properties, vol. 12, no. 4, pp. 834–843, 2009. [18] R. H. Sagor, M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, “Highly sensitive refractive index sensor optimized for blood group sensing utilizing the 92 Fano resonance,” Applied Nanoscience (Switzerland), vol. 11, no. 2, pp. 521– 534, 2021. [19] P. J. A. Sazio et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science (80-. )., vol. 311, no. 5767, pp. 1583–1586, 2006, doi: 10.1126/science.1124281. 84 [20] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square µ-ring cavities,” Laser Physics, vol. 30, no. 1, 2020. [21] M. S. M. R. M. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, pp. 1–13, Jan. 2021, doi: 10.1007/s11468-020-01355-9. [22] Islam, M.R., Khan, M.M.I., Mehjabin, F., Chowdhury, J.A., Islam, M., Yeasir, A.J., Mim, J.A. and Nahid, T.A., “Design of a dual spider‐shaped surface plasmon resonance‐based refractometric sensor with high amplitude sensitivity,” IET Optoelectronics, 17(1), pp.38-49, 2023. [23] Rahman, Md Moshiur, Farhana Akter Mou, Mohammed Imamul Hassan Bhuiyan, and Mohammad Rakibul Islam, "Refractometric THz sensing of blood components in a photonic crystal fiber platform," Brazilian Journal of Physics, vol. 52, no. 2, pp. 47, 2022. [24] X. Zhao, Z. Zhang, and S. Yan, “Tunable fano resonance in asymmetric mim waveguide structure,” Sensors, vol. 17, no. 7, p. 1494, 2017. [25] N. Jankovic and N. Cselyuszka, “Multiple fano-like mim plasmonic structure based on triangular resonator for refractive index sensing,” Sensors, vol. 18, no. 1, p. 287, 2018. [26] Q. Yang, X. Liu, F. Guo, H. Bai, B. Zhang, X. Li, Y. Tan, and Z. Zhang, “Multiple fano resonance in mim waveguide system with cross-shaped cavity,” Optik, vol. 220, p. 165163, 2020. [27] M. R. Rakhshani, “Optical refractive index sensor with two plasmonic doublesquare resonators for simultaneous sensing of human blood groups,” Photonics and Nanostructures - Fundamentals and Applications, vol. 39, no. October 2019, p. 100768, 2020. [28] Y.-Y. Xie, Y.-X. Huang, W.-L. Zhao, W.-H. Xu, and C. He, “A novel plasmonic sensor based on metal–insulator–metal waveguide with side-coupled hexagonal cavity,” IEEE Photonics Journal, vol. 7, no. 2, pp. 1–12, 2015. 85 [29] Y. Wang, M. Zheng, Q. Ruan, Y. Zhou, Y. Chen, P. Dai, Z. Yang, Z. Lin, Y. Long, Y. Li, N. Liu, C. W. Qiu, J. K. Yang, and H. Duan, “Stepwise-nanocavityassisted transmissive color filter array microprints,” Research, vol. 2018, pp. 10– 14, 2018. [30] Y. Zhang and M. Cui, “Refractive index sensor based on the symmetric mim waveguide structure,” Journal of Electronic Materials, vol. 48, no. 2, pp. 1005– 1010, 2019. [31] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “Metal-insulator-metal nano square ring resonator for gas sensing applications,” Waves in Random and Complex Media, vol. 0, no. 0, pp. 1–11, 2019. [32] H. Su, S. Yan, X. Yang, J. Guo, J. Wang, and E. Hua, “Sensing features of the fano resonance in an MIM waveguide coupled with an elliptical ring resonant cavity,” Applied Sciences (Switzerland), vol. 10, no. 15, 2020. [33] Y.-P. Qi, L.-Y. Wang, Y. Zhang, T. Zhang, B.-H. Zhang, X.-Y. Deng, and X.-X. Wang, “Multiple fano resonances in metal–insulator–metal waveguide with umbrella resonator coupled with metal baffle for refractive index sensing,” Chinese Physics B, vol. 29, no. 6, p. 067303, 2020. [34] K. Diest, J. A. Dionne, M. Spain, and H. A. Atwater, “Tunable color filters based on metal insulator-metal resonators,” Nano Letters, vol. 9, no. 7, pp. 2579–2583, 2009. [35] M. A. Butt, S. N. Khonina, and N. L. Kazanskiy, “A plasmonic colour filter and refractive index sensor applications based on metal-insulator-metal square µ-ring cavities,” Laser Physics, vol. 30, no. 1, 2020. [36] Z. Zhang, J. Yang, H. Xu, S. Xu, Y. Han, X. He, J. Zhang, J. Huang, D. Chen, and W. Xie, “A plasmonic ellipse resonator possessing hybrid modes for ultracompact chipscale application,” Physica Scripta, vol. 94, no. 12, p. 125511, 2019. [37] Islam, Mohammad Rakibul, A. N. M. Iftekher, Mariea Sharaf Anzum, Muntaha Rahman, and Sadia Siraz, "LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra-Broadband Dual Peak Sensing," IEEE Sensors Journal, vol. 22, no. 6, pp. 5628- 5635, 2022. 86 [38] Khetani, A.; Momenpour, A.; Alarcon, E.I.; Anis, H. Hollow core photonic crystal fiber for monitoring leukemia cells using surface enhanced raman scattering (SERS). Biomed. Opt. Express 2015, 6, 4599. [Google Scholar] [CrossRef][Green Version] [39] Fang, L.-M.; Chen, H.-M. Double-core D-type photonic crystal fiber refractive indexsensor based on grid coating. Proc. SPIE 2019, 11191, 13. [Google Scholar] [40] Mollah, M.A.; Yousufali, M.; Ankan, I.M.; Rahman, M.M.; Sarker, H.; Chakrabarti, K. Twin core photonic crystal fiber refractive index sensor for early detection of blood cancer. Sens. Bio-Sens. Res. 2020, 29, 100344. [Google Scholar] [CrossRef] [41] Wang, D.; Yi, Z.; Ma, G.; Dai, B.; Yang, J.; Zhang, J.; Yu, Y.; Liu, C.; Wu, X.; Bian, Q. Two-channel photonic crystal fiber based on surface plasmon resonance for magnetic field and temperature dual-parameter sensing. Phys. Chem. Chem. Phys. 2022, 24, 21233–21241. [Google Scholar] [CrossRef] [42] Fatema, S.; Absar, R.; Reja, M.I.; Akhtar, J. Effect of core infiltration in the birefringence of photonic crystal fiber. In Proceedings of the 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), Dhaka, Bangladesh, 26–28 December 2017; pp. 1– 5. [Google Scholar] [43] Shafkat, A.; Reja, M.I.; Miah, M.J.; Fatema, S.; Absar, R.; Akhtar, J. Numerical exploration of external sensing scheme based photonic crystal fiber surface plasmonic sensor with different noble plasmonic materials and their alloys. Optik 2021, 231, 166418. [Google Scholar] [CrossRef] [44] Wang, H.; Liao, M.; Xiao, H.; Han, X.; Jiang, Y.; Tan, J.; Zhang, P.; Shao, J.; Tian, Y.; Yang, J. High sensitivity temperature sensor based on a PDMS-assisted bow-shaped fiber structure. Opt. Commun. 2021, 481, 126536. [Google Scholar] [CrossRef] [45] Rifat, A.A.; Haider, F.; Ahmed, R.; Mahdiraji, G.A.; Adikan, F.M.; Miroshnichenko, A.E. Highly sensitive selectively coated photonic crystal fiber-based plasmonic sensor. Opt. Lett. 2018, 43, 891–894. [Google Scholar] [CrossRef] 87 [46] Ramola, A.; Marwaha, A.; Singh, S. Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl. Phys. A 2021, 127, 643. [Google Scholar] [CrossRef] [47] Yan, X.; Wang, Y.; Cheng, T.; Li, S. Photonic crystal fiber SPR liquid sensor based on elliptical detective channel. Micromachines 2021, 12, 408. [Google Scholar] [CrossRef] [48] Goodrich, T.T.; Lee, H.J.; Corn, R.M. Direct detection of genomic DNA by enzymatically amplified SPR imaging measurements of RNA microarrays. J. Am. Chem. Soc. 2004, 126, 4086–4087. [Google Scholar] [CrossRef] [49] Nooke, A.; Beck, U.; Hertwig, A.; Krause, A.; Krüger, H.; Lohse, V.; Negendank, D.; Steinbach, J. On the application of gold based SPR sensors for the detection of hazardous gases. Sens. Actuators B Chem. 2010, 149, 194–198. [Google Scholar] [CrossRef] [50] Mouvet, C.; Harris, R.D.; Maciag, C.; Luff, B.J.; Wilkinson, J.S.; Piehler, J.; Brecht, A.; Gauglitz, G.; Abuknesha, R.; Ismail, G. Determination of simazine in water samples by waveguide surface plasmon resonance. Anal. Chim. Acta 1997, 338, 109–117. [Google Scholar] [CrossRef] [51] Eid, M.M.A.; Rashed, A.N.Z.; Bulbul, A.A.M.; Podder, E. Mono-rectangular core photonic crystal fiber (MRC-PCF) for skin and blood cancer detection. Plasmonics 2020, 16, 717–727. [Google Scholar] [CrossRef] [52]Modeling_And_Simulation_Of_Surface_Plasmonic_Resonance_In_Photonic_Crystal_Fiber. Available online: http://studentsrepo.um.edu.my/8794/ (accessed on 1 March 2022). [53] Kashif, M.; Bakar, A.A.A.; Hashim, F.H. Analysing surface plasmon resonance phase sensor based on mach-zehnder interferometer technique using glycerin. Opt. Commun. 2016, 380, 419–424. [Google Scholar] [CrossRef] [54] Momota, M.R.; Hasan, M.R. Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt. Mater. 2018, 76, 287–294. [Google Scholar] [CrossRef] [55] Wieduwilt, T.; Tuniz, A.; Linzen, S.; Goerke, S.; Dellith, J.; Hübner, U.; Schmidt, M.A. Ultrathin niobium nanofilms on fiber optical tapers—A new route towards low-loss hybrid plasmonic modes. Sci. Rep. 2015, 5, 17060. [Google Scholar] [CrossRef][Green Version] 88 [56] Haque, E.; Mahmuda, S.; Hossain, M.A.; Hai, N.H.; Namihira, Y.; Ahmed, F. Highly sensitive dual-core pcf based plasmonic refractive index sensor for low refractive index detection. IEEE Photonics J. 2019, 11, 1–9. [Google Scholar] [CrossRef] [57] Shafkat, A.; Rashed, A.N.Z.; El-Hageen, H.M.; Alatwi, A.M. The effects of adding different adhesive layers with a microstructure fiber sensor based on surface plasmon resonance: A numerical study. Plasmonics 2021, 16, 819–832. [Google Scholar] [CrossRef] [58] Suvarnaphaet, P.; Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors 2017, 17, 2161. [Google Scholar] [CrossRef][Green Version] [59] K. Yee, “Numerical solution of initial boundary value problems involving maxwell’s equations in isotropic media,” IEEE Transactions on antennas and propagation, vol. 14, no. 3, pp. 302–307, 1966. [60] A. Taflove and S. C. Hagness, Computational electrodynamics: the finitedifference time domain method. Artech house, 200 [61] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” Journal of computational physics, vol. 114, no. 2, pp. 185–200, 1994. [62] T. Weiland, “A discretization method for the solution of maxwell’s equations for six component fields.-electronics and communication,(aeü), vol. 31,” 1977. [63] T. Weiland, “Time domain electromagnetic field computation with finite difference methods,” International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, vol. 9, no. 4, pp. 295–319, 1996. [64] Z. Rahimi, “The finite integration technique (fit) and the application in lithography simulations,” 2011. [65] C. S. Desai and J. F. Abel, Introduction to the finite element method; a numerical method for engineering analysis. Van Nostrand Reinhold, 1971. [66] M. N. Sadiku, Numerical techniques in electromagnetics with MATLAB. CRC press, 2018. 89 [67] A. D. Rakic, A. B. Djuriši ´ c, J. M. Elazar, and M. L. Majewski, “Optical proper- ´ ties of metallic films for vertical-cavity optoelectronic devices,” Applied optics, vol. 37, no. 22, pp. 5271–5283, 1998. [68] “RP Photonics Encyclopedia - silica fibers, optical fiber, glass, fiber optics.” https://www.rp-photonics.com/silica_fibers.html (accessed Feb. 19, 2021). [69] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V. Oliver, “Numerical analysis of a photonic crystal fiber for biosensing applications,” IEEE J. Quantum Electron., vol. 48, no. 11, pp. 1403–1410, 2012, doi: 10.1109/JQE.2012.2213803. [70] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [71] S. Sharmin, A. Bosu, and S. Akter, “A Simple Gold-Coated Photonic Crystal Fiber Based Plasmonic Biosensor,” in 2018 International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE), Nov. 2018, pp. 1–4, doi: 10.1109/ICAEEE.2018.8643003. [72] A. A. Rifat et al., “Surface Plasmon Resonance Photonic Crystal Fiber Biosensor: A Practical Sensing Approach,” IEEE Photonics Technol. Lett., vol. 27, no. 15, pp. 1628– 1631, Aug. 2015, doi: 10.1109/LPT.2015.2432812. [73] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPRsensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032– 1035, 2018, doi: 10.1109/LPT.2018.2829920. [74] S. A. Maier, “Surface plasmon polaritons at metal/insulator interfaces,” in Plasmonics: Fundamentals and Applications, pp. 21–37, Springer, 2007. [75] Rohit Grover, “Indium Phosphide Based Optical Micro Ring resonators” PhD thesis, pages: 1- 50, Graduate School of the University of Maryland, Collage Park, 2003. [76] Mi Kyoung Park, Jack Sheng Kee, Jessie Yiying Quah, Vivian Netto, Junfeng Song, Qing Fang, Eric Mouchel La Fosse, “Label-free aptamer sensor based on silicon microring resonator”, Sensor and Actuators B (2013), 552-559. 90 [77] Rajib Ahmed, Saeed Mahmud Ullah, “Design & Analysis on Silicon based Optical Micro Ring Resonator Sensor Device for Biomedical Applications at µm wavelength”, In proceeding of CIOMP-OSA Summer Session: Lasers and Their Applications, 2011. [78] Yuze Sun, Xudong Fan, “Optical ring resonator for biochemical and chemical sensing”, Springer, Anal Bional Chem (2011) 399: 205-211. [79] H. F. Fakhruldeen and A. Z. Ghazi Zahid, “An Overview of Photonic Crystal Fiber (PCF),” no. April 2019, 2019, [Online]. Available: www.tnsroindia.org.in. [80] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 5, pp. 1–13, 2021, doi: 10.1007/s00339- 021-04472- 2. [81] H. Emami Nejad, A. Mir, and A. Farmani, “Supersensitive and Tunable NanoBiosensor for Cancer Detection,” IEEE Sensors Journal, vol. 19, no. 13, pp. 4874–4881, 2019. [82] N. L. Kazanskii, M. A. Butt, S. A. Degtyarev, and S. N. Khonina, “Achievements in the development of plasmonic waveguide sensors for measuring the refractive index,” Computer Optics, vol. 44, no. 3, pp. 295–318, 2020. [83] M. F. Hassan, R. H. Sagor, I. Tathfif, K. S. Rashid, and M. Radoan, “An optimized dielectric-metal-dielectric refractive index nanosensor,” IEEE Sensors Journal, vol. 21, no. 2, pp. 1461–1469, 2020. [84] I. M. White and X. Fan, “On the performance quantification of resonant refractive index sensors,” Optics express, vol. 16, no. 2, pp. 1020–1028, 2008. [85] Chou Chao, Chung-Ting, Yuan-Fong Chou Chau, and Hai-Pang Chiang, "Breaking the symmetry of a metal–insulator–metal-based resonator for sensing applications," Nanoscale Research Letters, vol. 17, no. 1, pp. 48, 2022. [86] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt. Quantum Electron., vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082-021-02748-8. 91 [87] S. Islam et al., “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng., 2016, doi: 10.1117/1.oe.55.7.076117. [88] M. R. Hasan, S. Akter, T. Khatun, A. A. Rifat, and M. S. Anower, “Dual-hole unit-based kagome lattice microstructure fiber for low-loss and highly birefringent terahertz guidance,” Opt. Eng., 2017, doi: 10.1117/1.oe.56.4.043108. [89] M. R. Islam, M. A. Hossain, K. M. A. Talha, and R. K. Munia, “A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis,” Opt. Quantum Electron., 2020, doi: 10.1007/s11082-020-02532-0. [90] K. Ahmed et al., “Refractive Index-Based Blood Components Sensing in Terahertz Spectrum,” IEEE Sens. J., 2019, doi: 10.1109/JSEN.2019.2895166. [91] I. K. Yakasai, P. E. Abas, S. Ali, and F. Begum, “Modelling and simulation of a porous core photonic crystal fibre for terahertz wave propagation,” Opt. Quantum Electron., vol. 51, no. 4, pp. 1–16, Apr. 2019, doi: 10.1007/s11082-019-1832-x. [92] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [93] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Goldcoated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens. Bio-Sensing Res., vol. 18, pp. 7–12, Apr. 2018, doi: 10.1016/J.SBSR.2018.02.003. [94] M. R. M. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, p. 165311, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [95] Kazi Sharmeen Rashid, Infiter Tathfif, Ahmad Azuad Yaseer, Md. Farhad Hassan, Rakibul Hasan Sagor, Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Optics Express. 29 (2021) 37541-37554. [96] X.-P. Jin, X.-G. Huang, J. Tao, X.-S. Lin, Q. Zhang, A novel nanometeric plasmonic refractive index sensor. IEEE transactions on nanotechnology. 9 (2010) 134–137. 92 [97] Chung-Ting Chou Chao, Yuan-Fong Chou Chau, Hung Ji Huang, N. T. R. N. Kumara, Muhammad Raziq Rahimi Kooh, Chee Ming Lim, Hai-Pang Chiang, 2020. Highly Sensitive and Tunable Plasmonic Sensor Based on a Nanoring Resonator with Silver Nanorods. Nanomaterials. 10, 1399. [98] W. K. Jung, K. M. Byun, 2011. Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors. Biomedical Engineering Letters. 1 (2011), 153. [99] Seung-Woo Lee, Kyeong-Seok Lee, Junhyoung Ahn, Jae-Jong Lee, Min-Gon Kim, Yong Beom Shin, Highly sensitive biosensing using arrays of plasmonic au nanodisks realized by nanoimprint lithography. ACS nano. 5 (2011) 897– 904. [100] R. H. Sagor, M. F. Hassan, A. A. Yaseer, E. Surid, and M. I. Ahmed, Highly sensitive refractive index sensor optimized for blood group sensing utilizing the fano resonance. Applied Nanoscience. 11 (2021) 521–534. [101] Dragan Z. Stupar, Jovan S. Bajić, Ana V. Joža, Bojan M. Dakić, Miloš P. Slankamenac, Miloš B. Živanov, Edvard Cibula, 2012. Remote monitoring of water salinity by using side polished fiber-optic U-shaped sensor. 15th International Power Electronics and Motion Control Conference (EPE/PEMC). [102] F. Haider, R. A. Aoni, R. Ahmed, W. J. Chew, and G. A. Mahdiraji, “Alphabetic-Core Assisted Microstructure Fiber Based Plasmonic Biosensor,” Plasmonics, vol. 15, no. 6, pp. 1949– 1958, 2020. [103] Md. A. Islam, M. R. Islam, A. M. al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based THz sensor design for human body protein detection,” J Comput Electron, vol. 20, no. 1, pp. 377–386, Feb. 2021. [104] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Applied Physics A, vol. 127, no. 2, pp. 118, Feb. 2021. [105] D. Pysz et al., “Stack and draw fabrication of soft glass microstructured fiber optics,” Bull. Polish Acad. Sci. Tech. Sci., vol. 62, no. 4, pp. 667–682, Dec. 2014. [106] Y. Nishimura et al., “Photolithography,” in Flat Panel Display Manufacturing. Hoboken, NJ, USA: Wiley, pp. 287–310, 2018. 93 [107] P. J. A. Sazio et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science, vol. 311, no. 5767, pp. 1583–1586, 2006. [108] M S Islam et al., “Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum,” Opt. Exp., vol. 26, no. 23, pp. 30347–30361, 2018. [109] M. S. M. R. M. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, pp. 1–13, Jan. 2021, doi: 10.1007/s11468-020-01355-9 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2025
dc.description Supervised by Prof. Dr. Syed Iftekhar Ali, Department of Electrical and Electronics Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract In this thesis, three high-yielding plasmonic refractive index sensors are proposed to satisfy the current sensing demands in different sectors, for example, medical, forensic, and industrial. The proposed works employ a straight waveguide and octagonal ring resonator, a PCF-SPR sensor using symmetrical arrays of plasmonic layers, and another PCF-SPR sensor with dual plasmonic layers. COMSOL Multiphysics is chosen as the wave-solver, which inherently deploys the Finite Element Method. The re-simulations of existing structures corroborate the computational accuracy of COMSOL Multiphysics. Furthermore, the first two sensors fabricated through nanoimprint lithography technique and the stack-and-draw approach, respectively, exhibit linear correlation with the refractive index and the resonant wavelength. Moreover, the structural parameters of the plasmonic sensors are sensitive to variations. Thus, the suggested sensors undergo extensive simulations and optimization processes to maximize their performance. The proposed first work with the concentric octagonal-ring resonator exhibits a maximum sensitivity of 13157, and a high dip strength of 0.8311 nm/RIU is obtained after optimization. This proposed work is deployed to detect various types of fluids like air, optic oil, and different types of water. The proposed first PCF-SPR sensor displays a wavelength sensitivity of 85,300 nm/RIU and amplitude sensitivity of 800.037 RIU-1 . The device has also shown FOM of 370.8 RIU-1 which denotes high accuracy and reliability. A novel parameter was proposed in this work named Peak Amplitude Difference Sensitivity (PADS) for higher precision interrogation in case of multiple peak analysis. The proposed third work with dual plasmonic layer shows an initial wavelength sensitivity of 24,000 nm/RIU and 34,000 nm/RIU for two different peaks from 2 different regions. After optimization, the wavelength sensitivity of the second peak was achieved 1,12,500nm/RIU which is one of the highest among its competitors. The amplitude sensitivity was found 1248 RIU-1 . The structural parameters will be optimized to maximize the performance of the suggested refractive index sensor in future en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Comprehensive Study of Refractive Index Sensors for Bio-Sensing Applications en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics