dc.identifier.citation |
[1] A. Kumar Dalai, K. Kumar, and S. Kumar Jena, ‘Wireless device authentication using fingerprinting technique’, Advances in Intelligent Systems and Computing, vol. 707, pp. 163–172, 2019, doi: 10.1007/978-981-10-8639-7_17/COVER. [2] B. W. Ramsey, T. D. Stubbs, B. E. Mullins, M. A. Temple, and M. A. Buckner, ‘Wireless infrastructure protection using low-cost radio frequency fingerprinting receivers’, International Journal of Critical Infrastructure Protection, vol. 8, pp. 27– 39, Jan. 2015, doi: 10.1016/J.IJCIP.2014.11.002. [3] B. Sieka, ‘Using radio device fingerprinting for the detection of impersonation and Sybil attacks in wireless networks’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 4357 LNCS, pp. 179–192, 2006, doi: 10.1007/11964254_16. [4] A. K. Dalai and B. Sahoo, ‘A Device Fingerprinting Technique to Authenticate End user Devices in Wireless Networks’, pp. 1–6, Feb. 2023, doi: 10.1109/ISSSC56467.2022.10051406. [5] Y. Qin, B. Li, M. Yang, and Z. Yan, ‘Attack Detection for Wireless Enterprise Network: A Machine Learning Approach’, 2018 IEEE International Conference on Signal Processing, Communications and Computing, ICSPCC 2018, Dec. 2018, doi: 10.1109/ICSPCC.2018.8567797. [6] B. W. Ramsey, B. E. Mullins, M. A. Temple, and M. R. Grimaila, ‘Wireless Intrusion Detection and Device Fingerprinting through Preamble Manipulation’, IEEE Trans Dependable Secure Comput, vol. 12, no. 5, pp. 585–596, Sep. 2015, doi: 10.1109/TDSC.2014.2366455. [7] A. Elmaghbub and B. Hamdaoui, ‘Comprehensive RF Dataset Collection and Release: A Deep Learning-Based Device Fingerprinting Use Case’, 2021 IEEE Globecom Workshops, GC Wkshps 2021 - Proceedings, 2021, doi: 10.1109/GCWKSHPS52748.2021.9682024. [8] A. C. Jose, R. Malekian, and N. Ye, ‘Improving Home Automation Security; Integrating Device Fingerprinting into Smart Home’, IEEE Access, vol. 4, pp. 5776– 5787, 2016, doi: 10.1109/ACCESS.2016.2606478. [9] S. Yin, Q. Li, and O. Gnawali, ‘Interconnecting Wi-Fi devices with IEEE 802.15.4 devices without using a gateway’, Proceedings - IEEE International Conference on 44 Distributed Computing in Sensor Systems, DCOSS 2015, pp. 127–136, Jul. 2015, doi: 10.1109/DCOSS.2015.42. [10] T. Adame, A. Bel, B. Bellalta, J. Barcelo, and M. Oliver, ‘IEEE 802.11AH: The Wi Fi approach for M2M communications’, IEEE Wirel Commun, vol. 21, no. 6, pp. 144–152, Dec. 2014, doi: 10.1109/MWC.2014.7000982. [11] J. Hua, H. Sun, Z. Shen, Z. Qian, and S. Zhong, ‘Accurate and Efficient Wireless Device Fingerprinting Using Channel State Information’, Proceedings - IEEE INFOCOM, vol. 2018-April, pp. 1700–1708, Oct. 2018, doi: 10.1109/INFOCOM.2018.8485917. [12] C. Gentner, M. Ulmschneider, I. Kuehner, and A. Dammann, ‘Wi-Fi-RTT Indoor Positioning’, 2020 IEEE/ION Position, Location and Navigation Symposium, PLANS 2020, pp. 1029–1035, Apr. 2020, doi: 10.1109/PLANS46316.2020.9110232. [13] I. Martin-Escalona and E. Zola, ‘Ranging estimation error in Wi-Fi devices running IEEE 802.11mc’, 2020 IEEE Global Communications Conference, GLOBECOM 2020 - Proceedings, vol. 2020-January, Dec. 2020, doi: 10.1109/GLOBECOM42002.2020.9347973. [14] M. Ayyash et al., ‘Coexistence of Wi-Fi and LiFi toward 5G: Concepts, opportunities, and challenges’, IEEE Communications Magazine, vol. 54, no. 2, pp. 64–71, Feb. 2016, doi: 10.1109/MCOM.2016.7402263. [15] J. Baranda, P. Henarejos, and C. G. Gavrincea, ‘An SDR implementation of a visible light communication system based on the IEEE 802.15.7 standard’, 2013 20th International Conference on Telecommunications, ICT 2013, 2013, doi: 10.1109/ICTEL.2013.6632076. [16] B. Bloessl, M. Segata, C. Sommer, and F. Dressler, ‘Performance Assessment of IEEE 802.11p with an Open Source SDR-Based Prototype’, IEEE Trans Mob Comput, vol. 17, no. 5, pp. 1162–1175, May 2018, doi: 10.1109/TMC.2017.2751474. [17] M. Mishra, A. Potnis, P. Dwivedy, and S. K. Meena, ‘Notice of Removal: Software defined radio based receivers using RTL - SDR: A review’, International Conference on Recent Innovations in Signal Processing and Embedded Systems, RISE 2017, vol. 2018-January, pp. 62–65, Jun. 2018, doi: 10.1109/RISE.2017.8378125. 45 [18] J. Kim, S. Hyeon, and S. Choi, ‘Implementation of an SDR system using graphics processing unit’, IEEE Communications Magazine, vol. 48, no. 3, pp. 156–162, Mar. 2010, doi: 10.1109/MCOM.2010.5434388. [19] F. D. Vaca and Q. Niyaz, ‘An ensemble learning based Wi-Fi network intrusion detection system (WNIDS)’, NCA 2018 - 2018 IEEE 17th International Symposium on Network Computing and Applications, Nov. 2018, doi: 10.1109/NCA.2018.8548315. [20] H. Li, K. Gupta, C. Wang, N. Ghose, and B. Wang, ‘RadioNet: Robust Deep Learning Based Radio Fingerprinting’, 2022 IEEE Conference on Communications and Network Security, CNS 2022, pp. 190–198, 2022, doi: 10.1109/CNS56114.2022.9947255. [21] D. Takahashi, Y. Xiao, Y. Zhang, P. Chatzimisios, and H. H. Chen, ‘IEEE 802.11 user fingerprinting and its applications for intrusion detection’, Computers & Mathematics with Applications, vol. 60, no. 2, pp. 307–318, Jul. 2010, doi: 10.1016/J.CAMWA.2010.01.002. [22] H. C. Shin et al., ‘Deep Convolutional Neural Networks for Computer-Aided Detection: CNN Architectures, Dataset Characteristics and Transfer Learning’, IEEE Trans Med Imaging, vol. 35, no. 5, pp. 1285–1298, May 2016, doi: 10.1109/TMI.2016.2528162. [23] M. E. Aminanto, R. Choi, H. C. Tanuwidjaja, P. D. Yoo, and K. Kim, ‘Deep abstraction and weighted feature selection for Wi-Fi impersonation detection’, IEEE Transactions on Information Forensics and Security, vol. 13, no. 3, pp. 621–636, Oct. 2017, doi: 10.1109/TIFS.2017.2762828. [24] W. C. Suski, M. A. Temple, M. J. Mendenhall, and R. F. Mills, ‘Radio frequency fingerprinting commercial communication devices to enhance electronic security’, International Journal of Electronic Security and Digital Forensics, vol. 1, no. 3, pp. 301–322, 2008, doi: 10.1504/IJESDF.2008.020946. [25] K. Merchant, S. Revay, G. Stantchev, and B. Nousain, ‘Deep Learning for RF Device Fingerprinting in Cognitive Communication Networks’, IEEE Journal on Selected Topics in Signal Processing, vol. 12, no. 1, pp. 160–167, Feb. 2018, doi: 10.1109/JSTSP.2018.2796446. [26] V. L. L. Thing, ‘IEEE 802.11 network anomaly detection and attack classification: A deep learning approach’, IEEE Wireless Communications and Networking Conference, WCNC, May 2017, doi: 10.1109/WCNC.2017.7925567. 46 [27] Y. Yang, A. Hu, and J. Yu, ‘A practical radio frequency fingerprinting scheme for mobile phones identification’, Physical Communication, vol. 55, p. 101876, Dec. 2022, doi: 10.1016/J.PHYCOM.2022.101876. [28] B. Li and E. Cetin, ‘Design and Evaluation of a Graphical Deep Learning Approach for RF Fingerprinting’, IEEE Sens J, vol. 21, no. 17, pp. 19462–19468, Sep. 2021, doi: 10.1109/JSEN.2021.3088137. [29] S. Wang, L. Peng, H. Fu, A. Hu, and X. Zhou, ‘A convolutional neural network based rf fingerprinting identification scheme for mobile phones’, IEEE INFOCOM 2020 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2020, pp. 115–120, Jul. 2020, doi: 10.1109/INFOCOMWKSHPS50562.2020.9163058. [30] X. Guo, Z. Zhang, and J. Chang, ‘Survey of Mobile Device Authentication Methods Based on RF Fingerprint’, INFOCOM 2019 - IEEE Conference on Computer Communications Workshops, INFOCOM WKSHPS 2019, vol. 2019-January, Apr. 2019, doi: 10.1109/INFOCOMWKSHPS47286.2019.9093755. [31] T. Jian et al., ‘Deep Learning for RF Fingerprinting: A Massive Experimental Study’, IEEE Internet of Things Magazine, vol. 3, no. 1, pp. 50–57, Apr. 2020, doi: 10.1109/IOTM.0001.1900065. [32] G. Shen, J. Zhang, A. Marshall, L. Peng, and X. Wang, ‘Radio Frequency Fingerprint Identification for LoRa Using Deep Learning’, IEEE Journal on Selected Areas in Communications, vol. 39, no. 8, pp. 2604–2616, Aug. 2021, doi: 10.1109/JSAC.2021.3087250. [33] J. Ran, Y. Ji, and B. Tang, ‘A semi-supervised learning approach to IEEE 802.11 network anomaly detection’, IEEE Vehicular Technology Conference, vol. 2019- April, Apr. 2019, doi: 10.1109/VTCSPRING.2019.8746576. [34] T. Gaber, A. El-Ghamry, and A. E. Hassanien, ‘Injection attack detection using machine learning for smart IoT applications’, Physical Communication, vol. 52, p. 101685, Jun. 2022, doi: 10.1016/J.PHYCOM.2022.101685. [35] M. E. Aminanto and K. Kim, ‘Detecting impersonation attack in Wi-Fi networks using deep learning approach’, Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 10144 LNCS, pp. 136–147, 2017, doi: 10.1007/978-3-319- 56549-1_12/COVER. 47 [36] K. Sankhe et al., ‘No Radio Left Behind: Radio Fingerprinting Through Deep Learning of Physical-Layer Hardware Impairments’, IEEE Trans Cogn Commun Netw, vol. 6, no. 1, pp. 165–178, Mar. 2020, doi: 10.1109/TCCN.2019.2949308. [37] A. Al-Shawabka et al., ‘Exposing the Fingerprint: Dissecting the Impact of the Wireless Channel on Radio Fingerprinting’, Proceedings - IEEE INFOCOM, vol. 2020-July, pp. 646–655, Jul. 2020, doi: 10.1109/INFOCOM41043.2020.9155259. [38] T. Jian et al., ‘Deep Learning for RF Fingerprinting: A Massive Experimental Study’, IEEE Internet of Things Magazine, vol. 3, no. 1, pp. 50–57, Apr. 2020, doi: 10.1109/IOTM.0001.1900065. [39] D. Nouichi, M. Abdelsalam, Q. Nasir, and S. Abbas, ‘IoT Devices Security Using RF Fingerprinting’, 2019 Advances in Science and Engineering Technology International Conferences, ASET 2019, May 2019, doi: 10.1109/ICASET.2019.8714205. [40] S. Riyaz, K. Sankhe, S. Ioannidis, and K. Chowdhury, ‘Deep Learning Convolutional Neural Networks for Radio Identification’, IEEE Communications Magazine, vol. 56, no. 9, pp. 146–152, 2018, doi: 10.1109/MCOM.2018.1800153. [41] C. Cordeiro, D. Akhmetov, and M. Park, ‘IEEE 802.11ad: Introduction and performance evaluation of the first multi-Gbps Wi-Fi technology’, Proceedings of the Annual International Conference on Mobile Computing and Networking, MOBICOM, pp. 3–7, 2010, doi: 10.1145/1859964.1859968. [42] S. Dhawan, ‘Analogy of promising wireless technologies on different frequencies: Bluetooth, Wi-Fi, and WiMAX’, The 2nd International Conference on Wireless Broadband and Ultra Wideband Communications, AusWireless 2007, p. 14, 2007, doi: 10.1109/AUSWIRELESS.2007.27. [43] H. Jafari, O. Omotere, D. Adesina, H. H. Wu, and L. Qian, ‘IoT Devices Fingerprinting Using Deep Learning’, Proceedings - IEEE Military Communications Conference MILCOM, vol. 2019-October, pp. 901–906, Jan. 2019, doi: 10.1109/MILCOM.2018.8599826. [44] H. Li, K. Gupta, C. Wang, N. Ghose, and B. Wang, ‘RadioNet: Robust Deep Learning Based Radio Fingerprinting’, 2022 IEEE Conference on Communications and Network Security, CNS 2022, pp. 190–198, 2022, doi: 10.1109/CNS56114.2022.9947255. [45] K. Sankhe, M. Belgiovine, F. Zhou, S. Riyaz, S. Ioannidis, and K. Chowdhury, ‘ORACLE: Optimized Radio clAssification through Convolutional neuraL 48 nEtworks’, Proceedings - IEEE INFOCOM, vol. 2019-April, pp. 370–378, Apr. 2019, doi: 10.1109/INFOCOM.2019.8737463. [46] Q. Duan, X. Wei, J. Fan, L. Yu, and Y. Hu, ‘CNN-based Intrusion Classification for IEEE 802.11 Wireless Networks’, 2020 IEEE 6th International Conference on Computer and Communications, ICCC 2020, pp. 830–833, Dec. 2020, doi: 10.1109/ICCC51575.2020.9345293. [47] R. Vishwakarma and R. Vennelakanti, ‘CNN Model Tuning for Global Road Damage Detection’, Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020, pp. 5609–5615, Dec. 2020, doi: 10.1109/BIGDATA50022.2020.9377902 |
en_US |