| Login
dc.contributor.author | Karim, Ramisha Raida | |
dc.contributor.author | Tasnim, Sumaieta | |
dc.contributor.author | Haque, Md. Ehsanul | |
dc.date.accessioned | 2024-01-17T06:39:37Z | |
dc.date.available | 2024-01-17T06:39:37Z | |
dc.date.issued | 2023-05-30 | |
dc.identifier.citation | [1] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt Quantum Electron, vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082- 021-02748-8. [2] “‘https://www.news-medical.net/whitepaper/20161004/LSPR-Technology-The-Four-Most Frequently-Asked-Questions.aspx.’” [3] “‘[Online]. Available: https://www.affiniteinstruments.com/post/6-advantages-of-surface plasmon-resonance-technology.’” [4] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens Biosensing Res, vol. 18, pp. 7–12, Apr. 2018, doi: 10.1016/j.sbsr.2018.02.003. [5] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra-Broadband Dual Peak Sensing,” IEEE Sens J, vol. 22, no. 6, pp. 5628–5635, 2022, doi: 10.1109/JSEN.2022.3149715. [6] C. Liu et al., “Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings,” Opt Commun, vol. 464, Jun. 2020, doi: 10.1016/j.optcom.2020.125496. [7] S. Franzen, “Surface plasmon polaritons and screened plasma absorption in indium tin oxide compared to silver and gold,” Journal of Physical Chemistry C, vol. 112, no. 15, pp. 6027–6032, Apr. 2008, doi: 10.1021/jp7097813. [8] S. A. Zynio, A. V Samoylov, E. R. Surovtseva, V. M. Mirsky, and Y. M. Shirshov, “Bimetallic Layers Increase Sensitivity of Affinity Sensors Based on Surface Plasmon Resonance,” Sensors, vol. 2, pp. 62–70, 2002, [Online]. Available: http://www.mdpi.net/sensors [9] P. A. Sohi and M. Kahrizi, “Principles and Applications of Nanoplasmonics in Biological and Chemical Sensing: A Review,” in Recent Advances in Nanophotonics - Fundamentals and Applications, IntechOpen, 2020. doi: 10.5772/intechopen.93001. [10] A. K. Shakya and S. Singh, “Design and analysis of dual polarized Au and TiO 2-coated photonic crystal fiber surface plasmon resonance refractive index sensor: an extraneous sensing approach,” 2021, doi: 10.1117/1.JNP.15. [11] P. Sharma and P. Sharan, “Design of photonic crystal based ring resonator for detection of different blood constituents,” Opt Commun, vol. 348, pp. 19–23, 2015, doi: https://doi.org/10.1016/j.optcom.2015.03.015. [12] K. Ahmed et al., “Refractive Index Based Blood Components Sensing in Terahertz Spectrum.” 72 [13] M. R. Islam, A. N. M. Iftekher, F. A. Mou, M. M. Rahman, and M. I. H. Bhuiyan, “Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection,” Appl Phys A Mater Sci Process, vol. 127, no. 2, Feb. 2021, doi: 10.1007/s00339-020-04261-3. [14] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sens Biosensing Res, vol. 29, Aug. 2020, doi: 10.1016/j.sbsr.2020.100356. [15] M. R. Islam, M. A. Hossain, K. M. A. Talha, and R. K. Munia, “A novel hollow core photonic sensor for liquid analyte detection in the terahertz spectrum: design and analysis,” Opt Quantum Electron, vol. 52, no. 9, Sep. 2020, doi: 10.1007/s11082-020-02532-0. [16] M. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based THz sensor design for human body protein detection,” J Comput Electron, vol. 20, no. 1, pp. 377–386, Feb. 2021, doi: 10.1007/s10825-020-01606-2. [17] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Appl Phys A Mater Sci Process, vol. 127, no. 2, Feb. 2021, doi: 10.1007/s00339-020- 04162-5. [18] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt Quantum Electron, vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082- 021-02748-8. [19] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Appl Phys A Mater Sci Process, vol. 127, no. 5, May 2021, doi: 10.1007/s00339-021-04472-2. [20] M. R. Islam, A. N. M. Iftekher, F. Noor, M. R. H. Khan, M. T. Reza, and M. M. Nishat, “AZO coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum,” Appl Phys A Mater Sci Process, vol. 128, no. 1, Jan. 2022, doi: 10.1007/s00339-021- 05220-2. [21] M. R. Islam et al., “An Eye-Shaped Ultra-Sensitive Localized Surface Plasmon Resonance–Based Biochemical Sensor,” Plasmonics, vol. 17, no. 1, pp. 131–141, Feb. 2022, doi: 10.1007/s11468- 021-01501-x. [22] M. R. Islam et al., “Design of a Dual Cluster and Dual Array-Based PCF-SPR Biosensor with Ultra-high WS and FOM,” Plasmonics, vol. 17, no. 3, pp. 1171–1182, Jun. 2022, doi: 10.1007/s11468-022-01612-z. [23] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, M. A. Al Mahmud, and M. R. Islam, “Design and characterization of a photonic crystal fiber for improved THz wave propagation and analytes sensing,” Opt Quantum Electron, vol. 54, no. 10, Oct. 2022, doi: 10.1007/s11082-022-04057-0. [24] M. R. Islam et al., “Design of a quad channel SPR-based PCF sensor for analyte, strain, temperature, and magnetic field strength sensing,” Opt Quantum Electron, vol. 54, no. 9, Sep. 2022, doi: 10.1007/s11082-022-03912-4. 73 [25] M. R. Islam, T. T. Treena, N. M. Munim, and S. I. Ali, “Peak amplitude difference sensitivity (PADS): An interrogation technique for PCF-SPR sensors using symmetrical arrays of plasmonic layers,” Results Phys, vol. 48, May 2023, doi: 10.1016/j.rinp.2023.106434. [26] M. R. Islam et al., “Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg), vol. 221, Nov. 2020, doi: 10.1016/j.ijleo.2020.165311. [27] M. R. Islam et al., “Trigonal cluster-based ultra-sensitive surface plasmon resonance sensor for multipurpose sensing,” Sens Biosensing Res, vol. 35, Feb. 2022, doi: 10.1016/j.sbsr.2022.100477. [28] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983, doi: https://doi.org/10.1016/0250-6874(83)85036-7. [29] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys, vol. 19, Dec. 2020, doi: 10.1016/j.rinp.2020.103501. [30] M. R. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, vol. 16, no. 3, pp. 849–861, Jun. 2021, doi: 10.1007/s11468-020-01355-9. [31] R. K. Verma and B. D. Gupta, “Surface plasmon resonance based fiber optic sensor for the IR region using a conducting metal oxide film,” 2010. [32] S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas Sci Technol, vol. 14, no. 5, 2003, doi: 10.1088/0957-0233/14/5/201. [33] A. K. Sharma, R. Jha, and B. D. Gupta, “Fiber-Optic Sensors Based on Surface Plasmon Resonance: A Comprehensive Review,” IEEE Sens J, vol. 7, pp. 1118–1129, 2007. [34] Md. S. Islam et al., “A novel Zeonex based photonic sensor for alcohol detection in beverages,” in 2017 IEEE International Conference on Telecommunications and Photonics (ICTP), 2017, pp. 114–118. doi: 10.1109/ICTP.2017.8285905. [35] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sens Biosensing Res, vol. 29, Aug. 2020, doi: 10.1016/j.sbsr.2020.100356. [36] M. R. Islam et al., “Design of a Dual Cluster and Dual Array-Based PCF-SPR Biosensor with Ultra-high WS and FOM,” Plasmonics, vol. 17, no. 3, pp. 1171–1182, Jun. 2022, doi: 10.1007/s11468-022-01612-z. [37] C. Mouvet et al., “Determination of simazine in water samples by waveguide surface plasmon resonance,” Anal Chim Acta, vol. 338, no. 1, pp. 109–117, 1997, doi: https://doi.org/10.1016/S0003-2670(96)00443-6. 74 [38] B. Han et al., “Simultaneous measurement of temperature and strain based on dual SPR effect in PCF,” Opt Laser Technol, vol. 113, pp. 46–51, May 2019, doi: 10.1016/j.optlastec.2018.12.010. [39] L. Rindorf, J. B. Jensen, M. Dufva, L. H. Pedersen, P. E. Høiby, and O. Bang, “Photonic crystal fiber long-period gratings for biochemical sensing,” Opt. Express, vol. 14, no. 18, pp. 8224– 8231, Sep. 2006, doi: 10.1364/OE.14.008224. [40] S. Weng, L. Pei, J. Wang, T. Ning, and J. Li, “High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling,” Photon. Res., vol. 5, no. 2, pp. 103–107, Apr. 2017, doi: 10.1364/PRJ.5.000103. [41] J.-K. Wang, K. Xu, and G.-Y. Si, “High sensitivity D-shaped optical fiber strain sensor based on surface plasmon resonance,” Opt Commun, vol. 460, p. 125147, May 2019, doi: 10.1016/j.optcom.2019.125147. [42] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold-coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens Biosensing Res, vol. 18, pp. 7–12, 2018, doi: https://doi.org/10.1016/j.sbsr.2018.02.003. [43] A. A. Rifat et al., “Photonic crystal fiber based plasmonic sensors,” Sensors and Actuators, B: Chemical, vol. 243. Elsevier B.V., pp. 311–325, May 01, 2017. doi: 10.1016/j.snb.2016.11.113. [44] M. A. Mollah, S. M. R. Islam, M. Yousufali, L. F. Abdulrazak, M. B. Hossain, and I. S. Amiri, “Plasmonic temperature sensor using D-shaped photonic crystal fiber,” Results Phys, vol. 16, Mar. 2020, doi: 10.1016/j.rinp.2020.102966. [45] D. Krohn, “Fiber Optic Sensors: Fundamentals and Applications,” 2015. [46] F. (Federica) Poli, A. (Annamaria) Cucinotta, and Stefano. Selleri, Photonic crystal fibers : properties and applications. Springer, 2007. [47] J. Sultana, Md. S. Islam, K. Ahmed, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Terahertz detection of alcohol using a photonic crystal fiber sensor,” Appl. Opt., vol. 57, no. 10, pp. 2426–2433, Apr. 2018, doi: 10.1364/AO.57.002426. [48] Y. Zhao, R. Tong, F. Xia, and Y. Peng, “Current status of optical fiber biosensor based on surface plasmon resonance,” Biosens Bioelectron, vol. 142, p. 111505, 2019, doi: https://doi.org/10.1016/j.bios.2019.111505. [49] Y. Zhao, X. Hu, S. Hu, and Y. Peng, “Applications of fiber-optic biochemical sensor in microfluidic chips: A review,” Biosens Bioelectron, vol. 166, p. 112447, 2020, doi: https://doi.org/10.1016/j.bios.2020.112447. [50] S. W. James and R. P. Tatam, “Optical fibre long-period grating sensors: Characteristics and application,” Meas Sci Technol, vol. 14, no. 5, 2003, doi: 10.1088/0957-0233/14/5/201. 75 [51] Md. S. Islam, M. R. Islam, J. Sultana, A. Dinovitser, B. W.-H. Ng, and D. Abbott, “Exposed-core localized surface plasmon resonance biosensor,” Journal of the Optical Society of America B, vol. 36, no. 8, p. 2306, Aug. 2019, doi: 10.1364/josab.36.002306. [52] M. Islam et al., “A Novel Approach for Spectroscopic Chemical Identification Using Photonic Crystal Fiber in the Terahertz Regime,” IEEE Sens J, vol. 18, pp. 575–582, May 2018, doi: 10.1109/JSEN.2017.2775642. [53] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, pp. 299–304, 1983, doi: https://doi.org/10.1016/0250-6874(83)85036-7. [54] E. K. Akowuah, T. Gorman, H. Ademgil, S. Haxha, G. K. Robinson, and J. V Oliver, “Numerical Analysis of a Photonic Crystal Fiber for Biosensing Applications,” IEEE J Quantum Electron, vol. 48, no. 11, pp. 1403–1410, 2012, doi: 10.1109/JQE.2012.2213803. [55] B. D. Gupta and R. K. Verma, “Surface Plasmon Resonance-Based Fiber Optic Sensors: Principle, Probe Designs, and Some Applications,” J Sens, vol. 2009, p. 979761, 2009, doi: 10.1155/2009/979761. [56] A. A. Rifat et al., “Photonic crystal fiber based plasmonic sensors,” Sens Actuators B Chem, vol. 243, pp. 311–325, 2017, doi: https://doi.org/10.1016/j.snb.2016.11.113. [57] J. G. Ortega-Mendoza, A. Padilla-Vivanco, C. Toxqui-Quitl, P. Zaca-Morán, D. Villegas Hernández, and F. Chávez, “Optical Fiber Sensor Based on Localized Surface Plasmon Resonance Using Silver Nanoparticles Photodeposited on the Optical Fiber End,” Sensors, vol. 14, no. 10, pp. 18701–18710, 2014, doi: 10.3390/s141018701. [58] J. Homola, “Present and future of surface plasmon resonance biosensors,” Anal Bioanal Chem, vol. 377, no. 3, pp. 528–539, 2003, doi: 10.1007/s00216-003-2101-0. [59] R. Otupiri, E. K. Akowuah, S. Haxha, H. Ademgil, F. AbdelMalek, and A. Aggoun, “A Novel Birefrigent Photonic Crystal Fiber Surface Plasmon Resonance Biosensor,” IEEE Photonics J, vol. 6, no. 4, pp. 1–11, 2014, doi: 10.1109/JPHOT.2014.2335716. [60] M. R. Islam et al., “Design of a dual spider-shaped surface plasmon resonance-based refractometric sensor with high amplitude sensitivity,” IET Optoelectronics, vol. 17, no. 1, pp. 38–49, 2023, doi: https://doi.org/10.1049/ote2.12084. [61] M. R. Islam, E. Moazzam, R. Islam, R. L. Khan, and Z. Tasnim, “Design and Investigation of a low-loss Surface Plasmon resonance based PCF biosensor with a gold coated structure,” in Proceedings of 2020 11th International Conference on Electrical and Computer Engineering, ICECE 2020, Institute of Electrical and Electronics Engineers Inc., Dec. 2020, pp. 447–450. doi: 10.1109/ICECE51571.2020.9393045. [62] F. A. Mou, Md. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens Biosensing Res, vol. 29, p. 100346, 2020, doi: https://doi.org/10.1016/j.sbsr.2020.100346. 76 [63] M. R. Islam et al., “Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity,” Eur Phys J Plus, vol. 136, no. 2, Feb. 2021, doi: 10.1140/epjp/s13360-021-01220-6. [64] S. A. Maier, “Plasmonics: The Promise of Highly Integrated Optical Devices,” IEEE Journal of Selected Topics in Quantum Electronics, vol. 12, no. 6, pp. 1671–1677, 2006, doi: 10.1109/JSTQE.2006.884086. [65] S. P. Burgos, H. W. Lee, E. Feigenbaum, R. M. Briggs, and H. A. Atwater, “Synthesis and Characterization of Plasmonic Resonant Guided Wave Networks,” Nano Lett, vol. 14, no. 6, pp. 3284–3292, Jun. 2014, doi: 10.1021/nl500694c. [66] M. A. Al Mahmud, M. R. Islam, A. N. M. Iftekher, M. M. Rahman, and F. A. Mou, “Design and numerical analysis of a porous core photonic crystal fiber for refractometric THz sensing,” Microsystem Technologies, vol. 29, no. 1, pp. 115–126, Jan. 2023, doi: 10.1007/s00542-022- 05396-4. [67] M. R. Islam, Md. F. Kabir, K. Md. A. Talha, and Md. S. Islam, “A novel hollow core terahertz refractometric sensor,” Sens Biosensing Res, vol. 25, p. 100295, 2019, doi: https://doi.org/10.1016/j.sbsr.2019.100295. [68] M. Islam, J. Sultana, R. A. Aoni, A. Dinovitser, B. Ng, and D. Abbott, “Terahertz Sensing in a Hollow Core Photonic Crystal Fiber,” IEEE Sens J, vol. 18, pp. 4073–4080, May 2018, doi: 10.1109/JSEN.2018.2819165. [69] S. Al Tahhan and H. Aljobouri, “Sensing of Illegal Drugs by Using Photonic Crystal Fiber in Terahertz Regime,” Journal of Optical Communications, vol. 1, May 2020, doi: 10.1515/joc 2019-0291. [70] J. Wu, S. Li, X. Wang, M. Shi, X. Feng, and Y. Liu, “Ultrahigh sensitivity refractive index sensor of a D-shaped PCF based on surface plasmon resonance,” Appl. Opt., vol. 57, no. 15, pp. 4002– 4007, May 2018, doi: 10.1364/AO.57.004002. [71] Md. Ibadul Islam et al., “Design of single mode spiral photonic crystal fiber for gas sensing applications,” Sens Biosensing Res, vol. 13, pp. 55–62, 2017, doi: https://doi.org/10.1016/j.sbsr.2017.03.001. [72] K. Ahmed, M. Morshed, S. Asaduzzaman, and Md. F. H. Arif, “Optimization and enhancement of liquid analyte sensing performance based on square-cored octagonal photonic crystal fiber,” Optik - International Journal for Light and Electron Optics, vol. 131, pp. 687–696, May 2017, doi: 10.1016/j.ijleo.2016.11.171. [73] M. Islam, F. Mou, Md. M. Rahman, and M. Bhuiyan, “Hollow Core Photonic Crystal Fiber for Chemicals sensing in Liquid Analytes,” Int J Mod Phys B, vol. 34, May 2020, doi: 10.1142/S0217979220502598. 77 [74] A. Ramachandran, P. R. Babu, and K. Senthilnathan, “Sensitivity analysis of steering-wheel gas sensor against diverse core air hole sizes and core materials in terahertz wave band,” IOP Conf Ser Mater Sci Eng, vol. 263, 2017. [75] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Refractometric THz Sensing of Blood Components in a Photonic Crystal Fiber Platform,” Brazilian Journal of Physics, vol. 52, no. 2, Apr. 2022, doi: 10.1007/s13538-022-01054-2. [76] M. R. Islam and M. Mamadou, “Spider web ultrasensitive terahertz photonic crystal fiber for chemical sensing,” Optical Engineering, vol. 59, no. 08, Aug. 2020, doi: 10.1117/1.oe.59.8.087103. [77] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [78] V. Kaur and S. Singh, “Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications,” Optical Fiber Technology, vol. 48, pp. 159–164, Mar. 2019, doi: 10.1016/j.yofte.2018.12.015. [79] C. Rhodes et al., “Dependence of plasmon polaritons on the thickness of indium tin oxide thin films,” J Appl Phys, vol. 103, no. 9, 2008, doi: 10.1063/1.2908862. [80] R. W. Gerber, D. N. Leonard, and S. Franzen, “Conductive thin film multilayers of gold on glass formed by self-assembly of multiple size gold nanoparticles,” Thin Solid Films, vol. 517, no. 24, pp. 6803–6808, Oct. 2009, doi: 10.1016/j.tsf.2009.05.033. [81] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” Journal of Physical Chemistry B, vol. 107, no. 3, pp. 668–677, Jan. 2003, doi: 10.1021/jp026731y. [82] L. Wang, M. Hasanzadeh Kafshgari, and M. Meunier, “Optical Properties and Applications of Plasmonic-Metal Nanoparticles,” Advanced Functional Materials, vol. 30, no. 51. Wiley-VCH Verlag, Dec. 01, 2020. doi: 10.1002/adfm.202005400. [83] J.-C. Kim, H.-K. Kim, U.-C. Paek, B.-H. Lee, and J.-B. Eom, “The Fabrication of a Photonic Crystal Fiber and Measurement of its Properties,” J Opt Soc Korea, vol. 7, no. 2, pp. 79–83, Jun. 2003, doi: 10.3807/josk.2003.7.2.079. [84] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt Quantum Electron, vol. 53, no. 2, Feb. 2021, doi: 10.1007/s11082- 021-02748-8 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2038 | |
dc.description | Supervised by Dr. Mohammad Rakibul Islam, Professor and Head, Department of Electrical and Electronics Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.description.abstract | This research article provides a comprehensive analysis of a localized surface plasmon resonance (LSPR) based sensor, which operates in the visible to near infrared region and uses a distinctive combination of two metals, ITO and Au as the plasmonic layers to achieve exceptional sensitivity. The wavelength spectrum this sensor can now measure has been extended by combining these two materials in the RI region of 1.30 to 1.41, allowing the sensor to function in diverse fields such as bioimaging, biosensing, photocatalysis etc. A distinct characteristic of the sensor is also discussed which is termed as double polarization peak shift sensitivity (DPPSS) indicating the detection of resonance peak shift in both x-pol and y-pol simultaneously. DPPSS is the parameter based on which efficiency of the sensor is analyzed, wavelength sensitivity (WS) and practicality of the fabrication. After optimizing all the structural parameters of the proposed sensor, it shows the highest DPPSS value of 19560 nm/RIU and the maximum wavelength sensitivity of 19630 nm/RIU. The proposed sensor shows a resolution of 5.09 × 10–6 . This indicates that the sensor can detect small changes in analyte RI, precisely in the order of 10-6 . The proposed parameter DPPSS shows increased range of wavelength for the detection purpose and also considers both x and y polarizations in this regard. The advantages of using both gold and ITO has been discussed and it was observed that the sensor shows better performance with minute change detections because of the use of these two plasmonic materials. In addition to having a very high sensitivity, the suggested sensor is fabrication friendly. The proposed research serves as a foundation for a thorough exploration of the LSPR phenomena for PCF using noble metal nanospheres | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.title | Introducing Novel Double Polarization Peak Shift Sensitivity (DPPSS) Parameter for Enhanced Sensing Range of LSPR Sensor | en_US |
dc.type | Thesis | en_US |