Enhancing Wavelength Sensing Range of SPR-PCF Using Dual Peak Double Resonance: An LSPR Based Approach

Show simple item record

dc.contributor.author Rashmi, Wasifa Rahman
dc.contributor.author Etu, Maisha Farjana
dc.contributor.author Abbas, Sarah
dc.date.accessioned 2024-01-17T08:38:27Z
dc.date.available 2024-01-17T08:38:27Z
dc.date.issued 2023-05-30
dc.identifier.citation [1] M. R. Islam et al., “Design of a dual spider-shaped surface plasmon resonance-based refractometric sensor with high amplitude sensitivity,” IET Optoelectron., vol. 17, no. 1, pp. 38–49, 2023, doi: 10.1049/ote2.12084. [2] N. Bhalla, P. Jolly, N. Formisano, and P. Estrela, “Introduction to biosensors,” Essays Biochem., vol. 60, no. 1, p. 1, Jun. 2016, doi: 10.1042/EBC20150001. [3] P. Skládal, “Piezoelectric biosensors,” TrAC - Trends Anal. Chem., vol. 79, pp. 127– 133, May 2016, doi: 10.1016/j.trac.2015.12.009. [4] P. Mehrotra, “Biosensors and their applications – A review,” J. Oral Biol. Craniofacial Res., vol. 6, no. 2, pp. 153–159, May 2016, doi: 10.1016/J.JOBCR.2015.12.002. [5] C. Chen and J. Wang, “Optical biosensors: an exhaustive and comprehensive review,” Analyst, vol. 145, no. 5, pp. 1605–1628, Mar. 2020, doi: 10.1039/C9AN01998G. [6] Y. T. Chen et al., “Review of Integrated Optical Biosensors for Point-of-Care Applications,” Biosens. 2020, Vol. 10, Page 209, vol. 10, no. 12, p. 209, Dec. 2020, doi: 10.3390/BIOS10120209. [7] C. Chen and J. Wang, “Optical biosensors: an exhaustive and comprehensive review,” Analyst, vol. 145, no. 5, pp. 1605–1628, Mar. 2020, doi: 10.1039/C9AN01998G. [8] A. Tereshchenko et al., “Optical biosensors based on ZnO nanostructures: advantages and perspectives. A review,” Sensors Actuators B Chem., vol. 229, pp. 664–677, Jun. 2016, doi: 10.1016/J.SNB.2016.01.099. [9] L. Stolz, “Chapter 29. The Use of Surface Plasmon Resonance Based Biosensors in Drug Discovery,” Annu. Rep. Med. Chem., vol. 33, no. C, pp. 293–299, 1998, doi: 10.1016/S0065-7743(08)61094-5. [10] A. Syahir, K. Usui, K. Tomizaki, K. Kajikawa, and H. Mihara, “Label and Label-Free 67 Detection Techniques for Protein Microarrays,” Microarrays 2015, Vol. 4, Pages 228- 244, vol. 4, no. 2, pp. 228–244, Apr. 2015, doi: 10.3390/MICROARRAYS4020228. [11] “Surface Plasmon Resonance (SPR): Label-Free Detection | Biochemistry | JoVE.” https://www.jove.com/v/5697/surface-plasmon-resonance-spr (accessed May 27, 2023). [12] X. Fan, “Sensitive surface plasmon resonance label-free biosensor on a fiber end-facet,” Light Sci. Appl. 2022 111, vol. 11, no. 1, pp. 1–2, Nov. 2022, doi: 10.1038/s41377-022- 01025-x. [13] P. Zhang, G. Ma, W. Dong, Z. Wan, S. Wang, and N. Tao, “Plasmonic scattering imaging of single proteins and binding kinetics,” Nat. Methods 2020 1710, vol. 17, no. 10, pp. 1010–1017, Sep. 2020, doi: 10.1038/s41592-020-0947-0. [14] V. Sharif and H. Pakarzadeh, “High-performance surface plasmon resonance fiber sensor based on cylindrical vector modes,” Sci. Reports 2023 131, vol. 13, no. 1, pp. 1– 9, Mar. 2023, doi: 10.1038/s41598-023-31524-9. [15] S. Singh, B. Chaudhary, A. Upadhyay, D. Sharma, N. Ayyanar, and S. A. Taya, “A review on various sensing prospects of SPR based photonic crystal fibers,” Photonics Nanostructures - Fundam. Appl., vol. 54, p. 101119, May 2023, doi: 10.1016/J.PHOTONICS.2023.101119. [16] S. Mittal, T. Sharma, and M. Tiwari, “Surface plasmon resonance based photonic crystal fiber biosensors: A review,” Mater. Today Proc., vol. 43, pp. 3071–3074, Jan. 2021, doi: 10.1016/J.MATPR.2021.01.405. [17] M. S. Islam et al., “A novel Zeonex based photonic sensor for alcohol detection in beverages,” 2nd IEEE Int. Conf. Telecommun. Photonics, ICTP 2017, vol. 2017-Decem, pp. 114–118, 2018, doi: 10.1109/ICTP.2017.8285905. [18] M. Aminul Islam, M. Rakibul Islam, M. Moinul Islam Khan, J. A. Chowdhury, F. Mehjabin, and M. Islam, “Highly Birefringent Slotted Core Photonic Crystal Fiber for THz Wave Propagation,” Phys. Wave Phenom., vol. 28, no. 1, pp. 58–67, 2020, doi: 10.3103/S1541308X20010021. [19] R. H. Khan, A. A. Chowdhury, and M. R. Islam, “Wave-Shaped Microstructure Cancer Detection Sensor in Terahertz Band : applied sciences Wave-Shaped Microstructure 68 Cancer Detection Sensor in Terahertz Band : Design and Analysis,” no. May, 2023, doi: 10.3390/app13095784. [20] M. A. Al Mahmud, M. R. Islam, A. N. M. Iftekher, M. M. Rahman, and F. A. Mou, “Design and numerical analysis of a porous core photonic crystal fiber for refractometric THz sensing,” Microsyst. Technol., vol. 29, no. 1, pp. 115–126, 2023, doi: 10.1007/s00542-022-05396-4. [21] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Refractometric THz Sensing of Blood Components in a Photonic Crystal Fiber Platform,” Brazilian J. Phys., vol. 52, no. 2, 2022, doi: 10.1007/s13538-022-01054-2. [22] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, M. A. Al Mahmud, and M. R. Islam, “Design and characterization of a photonic crystal fiber for improved THz wave propagation and analytes sensing,” Opt. Quantum Electron., vol. 54, no. 10, pp. 1–29, 2022, doi: 10.1007/s11082-022-04057-0. [23] M. R. Islam et al., “Design of a hexagonal outlined porous cladding with vacant core photonic crystal fibre biosensor for cyanide detection at THz regime,” IET Optoelectron., vol. 16, no. 4, pp. 160–173, 2022, doi: 10.1049/ote2.12067. [24] M. R. H. Khan, F. A. M. Ali, and M. R. Islam, “THz sensing of CoViD-19 disinfecting products using photonic crystal fiber,” Sens. Bio-Sensing Res., vol. 33, p. 100447, 2021, doi: 10.1016/j.sbsr.2021.100447. [25] M. A. Islam, M. R. Islam, S. Siraz, M. Rahman, M. S. Anzum, and F. Noor, “Wheel structured Zeonex-based photonic crystal fiber sensor in THz regime for sensing milk,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 5, May 2021, doi: 10.1007/s00339-021- 04472-2. [26] M. R. Islam, A. N. M. Iftekher, F. A. Mou, M. M. Rahman, and M. I. H. Bhuiyan, “Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 2, Feb. 2021, doi: 10.1007/S00339-020-04261-3. [27] M. A. Islam, M. R. Islam, A. M. Al Naser, F. Anzum, and F. Z. Jaba, “Square structured photonic crystal fiber based THz sensor design for human body protein detection,” J. Comput. Electron., vol. 20, no. 1, pp. 377–386, 2021, doi: 10.1007/s10825-020-01606- 69 2. [28] M. R. Islam, F. A. Mou, M. M. Rahman, and M. I. Hassan Bhuiyan, “Hollow core photonic crystal fiber for chemicals sensing in liquid analytes: Design and analysis,” Int. J. Mod. Phys. B, vol. 34, no. 28, pp. 1–13, 2020, doi: 10.1142/S0217979220502598. [29] F. A. Mou, M. M. Rahman, A. Al Mahmud, M. R. Islam, and M. I. Hassan Bhuiyan, “Highly Sensitive Hollow Core Photonic Crystal Fiber Based Methyl-Alcohol Detector for Liquid Analytes in THz Regime,” 2020 IEEE Reg. 10 Symp. TENSYMP 2020, no. June, pp. 1640–1643, 2020, doi: 10.1109/TENSYMP50017.2020.9230831. [30] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Photonic crystal fiber based terahertz sensor for cholesterol detection in human blood and liquid foodstuffs,” Sens. Bio-Sensing Res., vol. 29, p. 100356, 2020, doi: 10.1016/j.sbsr.2020.100356. [31] M. A. Islam, M. R. Islam, Z. Tasnim, R. Islam, R. L. Khan, and E. Moazzam, “Low Loss and Dispersion-Flattened Octagonal Porous Core PCF for Terahertz Transmission Applications,” Iran. J. Sci. Technol. - Trans. Electr. Eng., vol. 44, no. 4, pp. 1583–1592, 2020, doi: 10.1007/s40998-020-00337-1. [32] F. A. Mou, M. M. Rahman, M. R. Islam, and M. I. H. Bhuiyan, “Development of a photonic crystal fiber for THz wave guidance and environmental pollutants detection,” Sens. Bio-Sensing Res., vol. 29, p. 100346, 2020, doi: 10.1016/j.sbsr.2020.100346. [33] M. Moshiur Rahman, F. Akter Mou, M. Imamul Hassan Bhuiyan, and M. Rakibul Islam, “Design and characterization of a circular sectored core cladding structured photonic crystal fiber with ultra-low EML and flattened dispersion in the THz regime,” Opt. Fiber Technol., vol. 55, no. January, p. 102158, 2020, doi: 10.1016/j.yofte.2020.102158. [34] M. R. Islam, M. F. Kabir, K. M. A. Talha, and M. S. Islam, “A novel hollow core terahertz refractometric sensor,” Sens. Bio-Sensing Res., vol. 25, no. July, p. 100295, 2019, doi: 10.1016/j.sbsr.2019.100295. [35] M. M. Rahman, F. A. Mou, M. I. H. Bhuiyan, and M. R. Islam, “Extremely Low Effective Material Loss of Air Core Photonic Crystal Fiber for THz Guidance,” Proc. 2019 IEEE Reg. 10 Symp. TENSYMP 2019, vol. 7, pp. 716–720, 2019, doi: 10.1109/TENSYMP46218.2019.8971297. [36] M. R. Islam, “Topas Based Low Loss and Dispersion Flatten Decagonal Porous Core 70 Photonic Crystal Fiber for Terahertz Communication,” no. January, 2019. [37] M. R. Islam, M. Arif Hossain, S. I. Ali, J. Sultana, and M. Saiful Islam, “Design and Characterization of an Ultra Low Loss, Dispersion-Flattened Slotted Photonic Crystal Fiber for Terahertz Application,” J. Opt. Commun., vol. 42, no. 4, pp. 619–626, 2021, doi: 10.1515/joc-2018-0152. [38] M. S. Islam et al., “Low loss and low dispersion hybrid core photonic crystal fiber for terahertz propagation,” Photonic Netw. Commun., vol. 35, no. 3, pp. 364–373, 2018, doi: 10.1007/s11107-017-0751-7. [39] M. S. Islam, K. M. Samaun Reza, and M. R. Islam, “Topas based high birefringent and low loss single mode hybrid-core porous fiber for broadband application,” Indian J. Pure Appl. Phys., vol. 56, no. 5, pp. 399–404, 2018. [40] M. S. Islam et al., “Zeonex-based asymmetrical terahertz photonic crystal fiber for multichannel communication and polarization maintaining applications,” Appl. Opt., vol. 57, no. 4, p. 666, 2018, doi: 10.1364/ao.57.000666. [41] J. Sultana, M. S. Islam, M. R. Islam, and D. Abbott, “High numerical aperture, highly birefringent novel photonic crystal fibre for medical imaging applications,” Electron. Lett., vol. 54, no. 2, pp. 61–62, 2018, doi: 10.1049/el.2017.3694. [42] M. S. Islam et al., “Extremely low material loss and dispersion flattened TOPAS based circular porous fiber for long distance terahertz wave transmission,” Opt. Fiber Technol., vol. 34, pp. 6–11, 2017, doi: 10.1016/j.yofte.2016.11.014. [43] M. S. Islam, J. Sultana, J. Atai, D. Abbott, S. Rana, and M. R. Islam, “Ultra low-loss hybrid core porous fiber for broadband applications,” Appl. Opt., vol. 56, no. 4, p. 1232, 2017, doi: 10.1364/ao.56.001232. [44] S. Rana et al., “A highly birefringent slotted-core THz fiber,” Proc. 9th Int. Conf. Electr. Comput. Eng. ICECE 2016, pp. 226–229, 2017, doi: 10.1109/ICECE.2016.7853897. [45] S. Islam et al., “Extremely low-loss, dispersion flattened porous-core photonic crystal fiber for terahertz regime,” Opt. Eng., vol. 55, no. 7, p. 076117, 2016, doi: 10.1117/1.oe.55.7.076117. [46] M. R. Islam, A. Hossain, Z. Mustafa, and T. Tahsin, “A Novel Photonic Crystal Fiber Biosensor Using Single Hexagonal Lattice Structure,” pp. 475–478, 2020. 71 [47] M. Rakibul, I. A. N. M. Iftekher, F. Noor, R. Hoque, and K. Taslim, “AZO ‑ coated plasmonic PCF nanosensor for blood constituent detection in near ‑ infrared and visible spectrum,” Appl. Phys. A, vol. 128, no. 1, pp. 1–13, 2022, doi: 10.1007/s00339-021- 05220-2. [48] M. R. Islam et al., “Design and numerical analysis of a gold-coated photonic crystal fiber based refractive index sensor,” Opt. Quantum Electron., vol. 53, no. 2, pp. 1–18, 2021, doi: 10.1007/s11082-021-02748-8. [49] M. R. Islam et al., “Surface plasmon resonance based highly sensitive gold coated PCF biosensor,” Appl. Phys. A Mater. Sci. Process., vol. 127, no. 2, pp. 1–12, 2021, doi: 10.1007/s00339-020-04162-5. [50] M. R. Islam et al., “Design and Analysis of a Biochemical Sensor Based on Surface Plasmon Resonance with Ultra-high Sensitivity,” Plasmonics, vol. 16, no. 3, pp. 849– 861, 2021, doi: 10.1007/s11468-020-01355-9. [51] M. Rakibul Islam, M. M. I. Khan, F. Mehjabin, J. Alam Chowdhury, and M. Islam, “Design of a fabrication friendly & highly sensitive surface plasmon resonance-based photonic crystal fiber biosensor,” Results Phys., vol. 19, no. August, p. 103501, 2020, doi: 10.1016/j.rinp.2020.103501. [52] M. R. Islam, A. N. M. Iftekher, F. Noor, M. R. H. Khan, M. T. Reza, and M. M. Nishat, “AZO-coated plasmonic PCF nanosensor for blood constituent detection in near infrared and visible spectrum,” Appl. Phys. A Mater. Sci. Process., vol. 128, no. 1, pp. 1–13, 2022, doi: 10.1007/s00339-021-05220-2. [53] M. R. Islam et al., “Design of a dual spider-shaped surface plasmon resonance-based refractometric sensor with high amplitude sensitivity,” IET Optoelectron., Feb. 2022, doi: 10.1049/OTE2.12084. [54] M. R. Islam, E. Moazzam, R. Islam, and R. L. Khan, “Design and Investigation of a Low-Loss Surface Plasmon Resonance based Design and Investigation of a low-loss Surface Plasmon resonance based PCF biosensor with a gold coated structure,” no. August 2022, 2020, doi: 10.1109/ICECE51571.2020.9393045. [55] M. Rakibul, I. Fahim, Y. Rakib, H. Antor, and M. Hassan, “An Eye ‑ Shaped Ultra ‑ Sensitive Localized Surface Plasmon Resonance – Based Biochemical Sensor,” 72 Plasmonics, no. 0123456789, 2021, doi: 10.1007/s11468-021-01501-x. [56] M. R. Islam et al., “Sensing and Bio-Sensing Research Trigonal cluster-based ultra sensitive surface plasmon resonance sensor for multipurpose sensing,” Sens. Bio Sensing Res., vol. 35, no. January, p. 100477, 2022, doi: 10.1016/j.sbsr.2022.100477. [57] M. R. Islam et al., “Design and analysis of a QC-SPR-PCF sensor for multipurpose sensing with supremely high FOM,” Appl. Nanosci., vol. 12, no. 1, pp. 29–45, 2022, doi: 10.1007/s13204-021-02150-6. [58] M. Rakibul, I. Kazi, R. Hasan, M. Islam, A. Nayeem, and M. Iftekher, “Design of a Dual Cluster and Dual Array ‑ Based PCF ‑ SPR Biosensor with Ultra ‑ high WS and FOM,” Plasmonics, pp. 1171–1182, 2022, doi: 10.1007/s11468-022-01612-z. [59] S. Bin Islam, K. R. Hasan, M. R. Islam, M. J. Nayen, and A. N. M. Iftekher, “Dual polarized highly sensitive surface-plasmon-resonance-based chemical and biomolecular sensor,” Appl. Opt. Vol. 59, Issue 11, pp. 3296-3305, vol. 59, no. 11, pp. 3296–3305, Apr. 2020, doi: 10.1364/AO.383352. [60] M. R. Islam et al., “Highly birefringent gold-coated SPR sensor with extremely enhanced amplitude and wavelength sensitivity,” Eur. Phys. J. Plus, vol. 136, no. 2, pp. 1–14, 2021, doi: 10.1140/epjp/s13360-021-01220-6. [61] M. R. Islam et al., “Optik Design and analysis of birefringent SPR based PCF biosensor with ultra-high sensitivity and low loss,” Optik (Stuttg)., vol. 221, no. May, p. 165311, 2020, doi: 10.1016/j.ijleo.2020.165311. [62] M. Rahman, M. R. Islam, S. Siraz, and M. S. Anzum, “A high crosstalk modified D shaped single-polarization filter for S and U for S and U band optical communication,” Opt. Quantum Electron., vol. 55, no. 3, pp. 1–14, 2023, doi: 10.1007/s11082-023- 04542-0. [63] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra Broadband Dual Peak Sensing,” IEEE Sens. J., vol. 22, no. 6, pp. 5628–5635, 2022, doi: 10.1109/JSEN.2022.3149715. [64] V. S. Chaudhary and D. Kumar, “TOPAS based porous core photonic crystal fiber for terahertz chemical sensor,” Optik (Stuttg)., vol. 223, no. June, p. 165562, 2020, doi: 73 10.1016/j.ijleo.2020.165562. [65] S. Dash, V. Mathur, N. Pandey, and R. K. Sinha, “Terahertz Wave Propagation Characteristics in Graded Teflon Based Solid-Core Photonic Crystal Fibre,” J. Phys. Conf. Ser., vol. 2426, no. 1, 2023, doi: 10.1088/1742-6596/2426/1/012021. [66] M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Polarization-preserving teflon photonic crystal fiber waveguide for THz radiation,” Conf. Dig. 2004 Jt. 29th Int. Conf. Infrared Millim. Waves 12th Int. Conf. Terahertz Electron., no. May 2014, pp. 139–140, 2004, doi: 10.1109/icimw.2004.1421992. [67] N. Muduli, G. Palai, and S. K. Tripathy, “Realization of a beam splitter using a Photonic Crystal Fiber ( PCF ),” Res. J. Phys. Appl. Sci., vol. 2, no. March, pp. 20–24, 2013. [68] T. Parvin and K. Ahmed, “Design of Honeycomb Shaped Spectroscopy based Biosensor for the Detection of Tuberculosis Cells Design of Honeycomb Shaped Spectroscopy based Biosensor for”. [69] G. J. Pearce, J. M. Pottage, D. M. Bird, P. J. Roberts, J. C. Knight, and P. S. J. Russell, “Hollow-core PCF for guidance in the mid to far infra-red,” Opt. Express, vol. 13, no. 18, p. 6937, 2005, doi: 10.1364/opex.13.006937. [70] Y. Ni, Z. Lei, J. Shu, and P. Jiangde, “Dispersion of square solid-core photonic bandgap fibers,” Opt. Express, vol. 12, no. 13, p. 2825, 2004, doi: 10.1364/opex.12.002825. [71] K. Ahmed and M. Morshed, “Design and numerical analysis of microstructured-core octagonal photonic crystal fiber for sensing applications,” Sens. Bio-Sensing Res., vol. 7, pp. 1–6, 2016, doi: 10.1016/j.sbsr.2015.10.005. [72] S. Li, “Equiangular spiral photonic crystal fiber for code synchronization in all-optical analog-to-digital conversion based on lumped time delay compensation scheme,” Optik (Stuttg)., vol. 127, no. 11, pp. 4693–4697, 2016, doi: 10.1016/j.ijleo.2016.02.017. [73] Y. Ying et al., “High Performance Dual-Core D-Shaped PCF Refractive Index Sensor Coated with Gold Grating,” Photonics, vol. 10, no. 4, 2023, doi: 10.3390/photonics10040473. [74] S. E. E. Profile, “Hybrid Structure Hollow Core PCF using PBG Mechanism for the Application of Optical Fiber Under the Supervision of Hybrid Structure Hollow f Core PCF using PBG Mechanism for the Application of Optical Fiber Md . Enam Khan Under 74 the Supervision of Dr . Rus,” no. January, 2021. [75] J. Li, “A review : Development of novel fiber-optic platforms for bulk and surface refractive index sensing applications,” Sensors and Actuators Reports, vol. 2, no. 1, p. 100018, 2020, doi: 10.1016/j.snr.2020.100018. [76] J. K. Sahota, N. Gupta, and D. Dhawan, “Fiber Bragg grating sensors for monitoring of physical parameters : a comprehensive review,” vol. 59, no. May, pp. 1–35, 2023, doi: 10.1117/1.OE.59.6.060901. [77] R. C. Jorgenson and S. S. Yee, “A fiber-optic chemical sensor based on surface plasmon resonance,” Sensors Actuators B. Chem., vol. 12, no. 3, pp. 213–220, 1993, doi: 10.1016/0925-4005(93)80021-3. [78] B. Liedberg, C. Nylander, and I. Lunström, “Surface plasmon resonance for gas detection and biosensing,” Sensors and Actuators, vol. 4, no. C, pp. 299–304, 1983, doi: 10.1016/0250-6874(83)85036-7. [79] C. E. H. Berger and J. Greve, “Differential SPR immunosensing,” Sensors Actuators, B Chem., vol. 63, no. 1, pp. 103–108, 2000, doi: 10.1016/S0925-4005(00)00307-5. [80] D. Irawan, K. Ramadhan, and A. Azhar, “Design of PCF-SPR for Early Detection of Skin Cancer Infected Cells,” J. Penelit. Pendidik. IPA, vol. 8, no. 5, pp. 2293–2298, 2022, doi: 10.29303/jppipa.v8i5.2120. [81] V. Koubová et al., “Detection of foodborne pathogens using surface plasmon resonance biosensors,” Sensors Actuators, B Chem., vol. 74, no. 1–3, pp. 100–105, 2001, doi: 10.1016/S0925-4005(00)00717-6. [82] J. Homola, “Surface plasmon resonance sensors for detection of chemical and biological species,” Chem. Rev., vol. 108, no. 2, pp. 462–493, 2008, doi: 10.1021/cr068107d. [83] M. Mohseni-Dargah, Z. Falahati, B. Dabirmanesh, P. Nasrollahi, and K. Khajeh, “Machine learning in surface plasmon resonance for environmental monitoring,” Artif. Intell. Data Sci. Environ. Sens., pp. 269–298, Jan. 2022, doi: 10.1016/B978-0-323- 90508-4.00012-5. [84] K. A. Rikta, M. S. Anower, M. S. Rahman, and M. M. Rahman, “SPR biosensor using SnSe-phosphorene heterostructure,” Sens. Bio-Sensing Res., vol. 33, p. 100442, Aug. 2021, doi: 10.1016/J.SBSR.2021.100442. 75 [85] P. S. Pandey, S. K. Raghuwanshi, A. Shadab, M. T. I. Ansari, U. K. Tiwari, and S. Kumar, “SPR Based Biosensing Chip for COVID-19 Diagnosis - A Review,” IEEE Sens. J., vol. 22, no. 14, pp. 13800–13810, 2022, doi: 10.1109/JSEN.2022.3181423. [86] C. Zhou, “Localized surface plasmonic resonance study of silver nanocubes for photonic crystal fiber sensor,” Opt. Lasers Eng., vol. 50, no. 11, pp. 1592–1595, 2012, doi: 10.1016/j.optlaseng.2012.05.020. [87] P. S. S. Dos Santos, J. M. M. M. de Almeida, and L. C. C. Coelho, “Study of LSPR Spectral Analysis Techniques on SPR Optical Fiber Sensors,” U.Porto J. Eng., vol. 8, no. 3 Special Issue, pp. 12–17, 2022, doi: 10.24840/2183-6493_008.003_0004. [88] M. R. Islam, A. N. M. Iftekher, I. Marshad, N. F. Rity, and R. U. Ahmad, “Analysis of a dual peak dual plasmonic layered LSPR-PCF sensor – Double peak shift sensitivity approach,” Optik (Stuttg)., vol. 280, p. 170793, Jun. 2023, doi: 10.1016/J.IJLEO.2023.170793. [89] M. Proenca, M. Rodrigues, F. Vaz, and J. Borges, “Carbon Monoxide (CO) Sensor Based on Au Nanoparticles Embedded in a CuO Matrix by HR-LSPR Spectroscopy at Room Temperature,” IEEE Sensors Lett., vol. 5, no. 5, 2021, doi: 10.1109/LSENS.2021.3074603. [90] “Development of LSPR-based optical biosensors for the label-free detection of biomolecular interactions in high-density peptide arrays.” https://www.researchgate.net/publication/280663098_Development_of_LSPR based_optical_biosensors_for_the_label free_detection_of_biomolecular_interactions_in_high-density_peptide_arrays (accessed May 27, 2023). [91] T. Tang et al., “Promoting Plasmonic Hot Hole Extraction and Photothermal Effect for the Oxygen Evolution Reactions,” Chemistry, 2023, doi: 10.1002/CHEM.202300225. [92] M. Hautakorpi, M. Mattinen, and H. Ludvigsen, “Surface-plasmon-resonance sensor based on suspended-core microstructured optical fiber,” 2008 Jt. Conf. Opto-Electronics Commun. Conf. Aust. Conf. Opt. Fibre Technol. OECC/ACOFT 2008, vol. 16, no. 12, pp. 2390–2392, 2008, doi: 10.1109/OECCACOFT.2008.4610571. [93] Y. E. Monfared and M. Qasymeh, “Plasmonic Biosensor for Low ‑ Index Liquid Analyte 76 Detection Using Graphene ‑ Assisted Photonic Crystal Fiber,” Plasmonics, pp. 881–889, 2021, doi: 10.1007/s11468-020-01308-2. [94] N. Luan, R. Wang, W. Lv, and J. Yao, “Surface plasmon resonance sensor based on D shaped microstructured optical fiber with hollow core,” Opt. Express, vol. 23, no. 7, p. 8576, 2015, doi: 10.1364/oe.23.008576. [95] H. S. Sehmi, W. Langbein, and E. A. Muljarov, “Optimizing the Drude-Lorentz model for material permittivity: Method, program, and examples for gold, silver, and copper,” Phys. Rev. B, vol. 95, no. 11, p. 115444, Mar. 2017, doi: 10.1103/PHYSREVB.95.115444/FIGURES/9/MEDIUM. [96] “(2) Optics hecht and zajac 4th ed | Filipe Santos - Academia.edu.” [97] M. S. Islam et al., “A Hi-Bi Ultra-Sensitive Surface Plasmon Resonance Fiber Sensor,” IEEE Access, vol. 7, no. i, pp. 79085–79094, 2019, doi: 10.1109/ACCESS.2019.2922663. [98] V. Kaur and S. Singh, “Design approach of solid-core photonic crystal fiber sensor with sensing ring for blood component detection,” J. Nanophotonics, vol. 13, no. 02, p. 1, 2019, doi: 10.1117/1.jnp.13.026011. [99] A. A. Rifat, G. Amouzad Mahdiraji, D. M. Chow, Y. G. Shee, R. Ahmed, and F. R. M. Adikan, “Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core,” Sensors (Switzerland), vol. 15, no. 5, pp. 11499–11510, 2015, doi: 10.3390/s150511499. [100] P. R. West, S. Ishii, G. Naik, N. Emani, V. M. Shalaev, and A. Boltasseva, “<Shalev_Review-Plasmon.Pdf>,” pp. 1–28. [101] F. Haider, R. A. Aoni, R. Ahmed, M. S. Islam, and A. E. Miroshnichenko, “Propagation Controlled Photonic Crystal Fiber-Based Plasmonic Sensor via Scaled-Down Approach,” IEEE Sens. J., vol. 19, no. 3, pp. 962–969, 2019, doi: 10.1109/JSEN.2018.2880161. [102] M. Rakibul Islam, A. N. M. Iftekher, M. S. Anzum, M. Rahman, and S. Siraz, “LSPR Based Double Peak Double Plasmonic Layered Bent Core PCF-SPR Sensor for Ultra Broadband Dual Peak Sensing,” IEEE Sens. J., vol. 22, no. 6, pp. 5628–5635, Mar. 2022, doi: 10.1109/JSEN.2022.3149715. 77 [103] M. R. Hasan et al., “Spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor,” IEEE Sens. J., vol. 18, no. 1, pp. 133–140, 2018, doi: 10.1109/JSEN.2017.2769720. [104] A. Kumar Paul, A. Krishno Sarkar, A. B. S. Rahman, and A. Khaleque, “Twin core photonic crystal fiber plasmonic refractive index sensor,” IEEE Sens. J., vol. 18, no. 14, pp. 5761–5769, 2018, doi: 10.1109/JSEN.2018.2841035. [105] S. Chakma, M. A. Khalek, B. K. Paul, K. Ahmed, M. R. Hasan, and A. N. Bahar, “Gold coated photonic crystal fiber biosensor based on surface plasmon resonance: Design and analysis,” Sens. Bio-Sensing Res., vol. 18, pp. 7–12, 2018, doi: 10.1016/j.sbsr.2018.02.003. [106] S. Chu et al., “Influence of the Sub-peak of Secondary Surface Plasmon Resonance onto the Sensing Performance of a D-shaped Photonic Crystal Fibre Sensor,” IEEE Sens. J., vol. PP, no. c, p. 1, 2019, doi: 10.1109/JSEN.2019.2953393. [107] S. Jain, K. Choudhary, and S. Kumar, “Photonic crystal fiber-based SPR sensor for broad range of refractive index sensing applications,” Opt. Fiber Technol., vol. 73, p. 103030, Oct. 2022, doi: 10.1016/J.YOFTE.2022.103030. [108] J. N. Dash, R. Das, and R. Jha, “AZO coated microchannel incorporated PCF-based SPR sensor: A numerical analysis,” IEEE Photonics Technol. Lett., vol. 30, no. 11, pp. 1032– 1035, 2018, doi: 10.1109/LPT.2018.2829920. [109] P. Chu, J. Chen, Z. Xiong, and Z. Yi, “Controllable frequency conversion in the coupled time-modulated cavities with phase delay,” Opt. Commun., vol. 476, p. 126338, 2020, doi: 10.1016/j.optcom.2020.126338. [110] P. J. A. Sazio et al., “Microstructured optical fibers as high-pressure microfluidic reactors,” Science (80-. )., vol. 311, no. 5767, pp. 1583–1586, 2006, doi: 10.1126/science.1124281. [111] D. K. Kim et al., “Label-free DNA biosensor based on localized surface plasmon resonance coupled with interferometry,” Anal. Chem., vol. 79, no. 5, pp. 1855–1864, 2007, doi: 10.1021/ac061909o. [112] C. D. Mathers and D. Loncar, “Projections of global mortality and burden of disease from 2002 to 2030,” PLoS Med., vol. 3, no. 11, pp. 2011–2030, 2006, doi: 78 10.1371/journal.pmed.0030442. [113] T. J. Park, S. J. Lee, D. K. Kim, N. S. Heo, J. Y. Park, and S. Y. Lee, “Development of label-free optical diagnosis for sensitive detection of influenza virus with genetically engineered fusion protein,” Talanta, vol. 89, pp. 246–252, 2012, doi: 10.1016/j.talanta.2011.12.021. [114] J. H. Lee, B. C. Kim, B. K. Oh, and J. W. Choi, “Highly sensitive localized surface plasmon resonance immunosensor for label-free detection of HIV-1,” Nanomedicine Nanotechnology, Biol. Med., vol. 9, no. 7, pp. 1018–1026, 2013, doi: 10.1016/j.nano.2013.03.005. [115] T. Ohta, M. Ito, T. Kotani, and T. Hattori, “Emission enhancement of laser-induced breakdown spectroscopy by localized surface plasmon resonance for analyzing plant nutrients,” Appl. Spectrosc., vol. 63, no. 5, pp. 555–558, 2009, doi: 10.1366/000370209788346896. [116] T. J. Lin, K. T. Huang, and C. Y. Liu, “Determination of organophosphorous pesticides by a novel biosensor based on localized surface plasmon resonance,” Biosens. Bioelectron., vol. 22, no. 4 SPEC. ISS., pp. 513–518, 2006, doi: 10.1016/j.bios.2006.05.007. [117] K. Takemura, “Surface plasmon resonance (Spr)-and localized spr (lspr)-based virus sensing systems: Optical vibration of nano-and micro-metallic materials for the development of next-generation virus detection technology,” Biosensors, vol. 11, no. 8, 2021, doi: 10.3390/bios11080250. [118] D. L. Zhong, F. L. Yuan, L. Lian, and Z. H. Cheng, “A localized surface plasmon resonance light-scattering assay of mercury (II) on the basis of Hg2+-DNA complex induced aggregation of gold nanoparticles,” Environ. Sci. Technol., vol. 43, no. 13, pp. 5022–5027, 2009, doi: 10.1021/es9001983 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2040
dc.description Supervised by Prof. Dr. Mohammad Rakibul Islam, Department of Electrical and Electronics Engineering (EEE) Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh en_US
dc.description.abstract A novel sensor developed using GZO and gold as plasmonic materials is proposed in this work. We have designed our sensor in COMSOL Multiphysics software v5.6 and performed its numerical investigation utilizing the FEM. The simulation results manifested the fact that double resonance peaks were created at two specific wavelengths due to the exclusive dispersion relation arising by the concurrent use of two plasmonic materials. A unique parameter termed as DPSS has been presented by taking shifting of the double resonance peaks into consideration and the optimization of the presented design has been accomplished with a view to achieving the maximum value of DPSS. At optimal design conditions, a highest DPSS value of 11,720 um/ RIU was acquired, and the sensor depicted the potentiality of analyte detection constituting a wide RI range of 1.30 to 1.40. Furthermore, the working range of the sensor was found to be in the broad wavelength spectrum of 0.3 um to 0.98 um which ascertains its efficacy in both the ultra-violet and visible spectral range. An acutely low value of Confinement Loss (CL) has also been illustrated by the sensor making it appropriate for larger sensor lengths[1]. Moreover, the sensor we proposed demonstrated a maximal Wavelength Sensitivity (WS) of 11,480 nm/RIU while detecting analytes constituting the range of RI of 1.39-1.40 with a precise sensor resolution value of 8.71× 10–6 RIU correspondingly. Therefore, expediency of the sensor in both the ultra-violet and visible spectrum range confirms its novelty and credibility in a diverse range of biosensing applications while its high DPSS and WS values, minute wavelength resolution value and low CL values uphold its position as an efficacious medium of analyte detection in the field of biosensing. en_US
dc.language.iso en en_US
dc.publisher Department of Electrical and Elecrtonics Engineering(EEE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Enhancing Wavelength Sensing Range of SPR-PCF Using Dual Peak Double Resonance: An LSPR Based Approach en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics