dc.identifier.citation |
[1] M. Iqbal, Z. Ahmad, S. Raza, and F. Azam, “Efficient Traffic Violation Monitoring: A Combined Approach Utilizing YOLOv8,” Proceedings of the 2018 International Conference on Frontiers of Information Technology (FIT), Islamabad, Pakistan, 2018, pp. 1-6. [2] S. Iqbal, S. Hassan, M. N. Khan, and A. Wahab, “An Integrated Approach for Traffic Violation Monitoring: Harnessing the Power of YOLOv8,” 2020 16th International Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 2020, pp. 1-6. [3] Q. Abbas, A. Qayyum, A. Raza, and A. Khan, “V-ITS: Video-based Intelligent Transportation System for Monitoring Vehicle Illegal Activities,” 2019 15th Interna- tional Conference on Emerging Technologies (ICET), Islamabad, Pakistan, 2019, pp. 1-6. [4] A. Malik, R. Nawaz, and S. A. Mirza, “Real-time Traffic Violation Detection System using YOLOv8,” 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), Sukkur, Pakistan, 2020, pp. 1-6. [5] M. Raza, S. Raza, S. Hussain, and K. Azam, “YOLOv8-Based Traffic Violation Detection System Using Deep Learning,” arXiv preprint arXiv:2304.00501, 2023. [6] A. Ali, M. N. Khan, F. M. Azam, and M. Q. Raza, “An Integrated Approach for Traffic Violation Monitoring with YOLOv8,” 2020 8th International Conference on Smart Computing and Communication (ICSCC), Islamabad, Pakistan, 2020, pp. 1-6. [7] M. S. Khan, S. N. Ahmed, A. S. Sheikh, and M. Raza, “Intelligent Traffic Vi olation Monitoring System using Deep Learning,” Malaysian Journal of Science and Technology Studies (MJSTS), vol. 2, no. 1, pp. 20-29, 2021. [8] S. Ahmed, M. Azam, and M. Khan, “Efficient Traffic Violation Monitoring Sys tem using YOLOv8,” 2012 International Conference on Frontiers of Information Tech- nology (FIT), Islamabad, Pakistan, 2012, pp. 282-285. 49 [9] H. Rasool, H. Saeed, M. Akbar, and S. J. Ali, “Traffic Violation Monitoring System using YOLOv8,” 2019 12th International Conference on Electrical Engineer- ing/Electronics, Computer, Telecommunications and Information Technology (ECTI- CON), Phuket, Thailand, 2019, pp. 1-5. [10] A. Ali, M. N. Khan, F. M. Azam, and M. Q. Raza, “An Integrated Approach for Traffic Violation Monitoring with YOLOv8,” 2020 8th International Conference on Smart Computing and Communication (ICSCC), Islamabad, Pakistan, 2020, pp. 1-6. [11] F. Raza, A. S. Shah, M. R. Zafar, and S. S. Ahmed, “Traffic Violation Monitor ing using YOLOv8,” arXiv preprint arXiv:2304.14466, 2023. [12] M. M. Trivedi, T. Gandhi and J. McCall, “Looking-In and Looking-Out of a Vehicle: Computer-Vision-Based Enhanced Vehicle Safety,” IEEE Transactions on Intelligent Transportation Systems, vol. 8, no. 1, pp. 108-120, March 2007. [13] F. A. Arnob, A. Fuad, A. T. Nizam, S. Barua, A. A. Choudhury and M. Islam, ”An Intelligent Traffic System for Detecting Lane Based Rule Violation,” 2019 Interna- tional Conference on Advances in the Emerging Computing Technologies (AECT), Al Madinah Al Munawwarah, Saudi Arabia, 2020, pp. 1- 6. [14] Rafi, Minar Mahmud, et al. “Performance Analysis of Deep Learning YOLO Models for South Asian Regional Vehicle Recognition.” International Journal of Advanced Computer Science and Applications 13.9 (2022). [15] H. R. Mampilayil and R. K., ”Deep learning based Detection of One Way Traf- fic Rule Violation of Three Wheeler Vehicles,” 2019 International Conference on Intel- ligent Computing and Control Systems (ICCS), Madurai, India, 2019, pp. 1453-1457. [16] R. M. Alamgir et al., “Performance Analysis of YOLO-based Architectures for Vehicle Detection from Traffic Images in Bangladesh,” 2022 25th International Con- ference on Computer and Information Technology (ICCIT), Cox’s Bazar, Bangladesh, 2022, pp. 982-987. [17] Z. Rahman, A. M. Ami and M. A. Ullah, “A Real-Time Wrong-Way Vehicle Detection Based on YOLO and Centroid Tracking,” 2020 IEEE Region 10 50 Symposium (TENSYMP), Dhaka, Bangladesh, 2020, pp. 916-920. [18] P. Suttiponpisarn, C. Charnsripinyo, S. Usanavasin and H. Nakahara, “Detection of Wrong Direction Vehicles on Two-Way Traffic,” 2021 13th International Confer- ence on Knowledge and Systems Engineering (KSE), Bangkok, Thailand, 2021, pp. 1-6. [19] J. Park, Y. Lee, J. H. Heo and S. -J. Kang, “Convolutional Neural Network based Jaywalking Data Generation and Classification,” 2019 International SoC Design Conference (ISOCC), Jeju, Korea (South), 2019, pp. 132-133. [20] S. Mostafi, W. Zhao, S. Sukreep, K. Elgazzar and A. Azim, ”Real-Time Jay walking Detection and Notification System using Deep Learning and Multi-Object Track- ing,” GLOBECOM 2022 - 2022 IEEE Global Communications Conference, Rio de Janeiro, Brazil, 2022, pp. 1164-1168. [21] R. J. Franklin and Mohana, “Traffic Signal Violation Detection using Artificial Intelligence and Deep Learning,” 2020 5th International Conference on Communication and Electronics Systems (ICCES), Coimbatore, India, 2020, pp. 839-844. [22] F. H. Shubho, F. Iftekhar, E. Hossain and S. Siddique, “Real-time traffic monitoring and traffic offense detection using YOLOv4 and OpenCV DNN,” TENCON 2021- 2021 IEEE Region 10 Conference (TENCON), Auckland, New Zealand, 2021, pp. 46-51. [23] OpenCV, "Point Polygon Test," OpenCV Documentation, 3.4, URL: https://docs.opencv.org/3.4/dc/d48/tutorial_point_polygon_test.html. Accessed on:Jun. 15, 2023. [24] T.-Y. Lin, M. Maire, S. Belongie, L. Bourdev, R. Girshick, J. Hays, P. Perona, D. Ramanan, C. L. Zitnick, and P. Dolla´r, “Microsoft COCO: Common Objects in Con text,” European Conference on Computer Vision, Springer, Cham, 2014, pp. 740-755 [25] Girshick, R. (2015). Fast R-CNN. In Proceedings of the IEEE international conference on computer vision (ICCV) (pp. 1440-1448). DOI: 10.1109/ICCV.2015.169. [26] Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In 51 Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 580-587). [27] Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster R-CNN: Towards real- time object detection with region proposal networks. In Advances in Neural Information Processing Systems (NIPS) (pp. 91-99). [28] Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016). You only look once: Unified, real-time object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR) (pp. 779-788). [29] G. Jocher, A. Chaurasia, and J. Qiu, "Ultralytics YOLOv8," version 8.0.0, 2023. [Online]. Available: https://github.com/ultralytics/ultralytics |
en_US |