dc.identifier.citation |
1. Supratak, A., Dong, H., Wu, C. & Guo, Y. DeepSleepNet: A model for automatic sleep stage scoring based on raw single-channel EEG. IEEE Transactions on Neural Systems and Rehabilitation Engineering 25, 1998–2008 (2017). 2. Lajnef, T. et al. Learning machines and sleeping brains: automatic sleep stage clas sification using decision-tree multi-class support vector machines. Journal of neuro science methods 250, 94–105 (2015). 3. Huang, C.-S. et al. Knowledge-based identification of sleep stages based on two forehead electroencephalogram channels. Frontiers in neuroscience 8, 263 (2014). 27 4. Tsinalis, O., Matthews, P. M. & Guo, Y. Automatic sleep stage scoring using time frequency analysis and stacked sparse autoencoders. Annals of biomedical engineer ing 44, 1587–1597 (2016). 5. Hassan, A. R. & Subasi, A. A decision support system for automated identification of sleep stages from single-channel EEG signals. Knowledge-Based Systems 128, 115–124 (2017). 6. L¨angkvist, M., Karlsson, L. & Loutfi, A. Sleep stage classification using unsupervised feature learning. Advances in Artificial Neural Systems 2012 (2012). 7. Mousavi, S., Afghah, F. & Acharya, U. R. SleepEEGNet: Automated sleep stage scoring with sequence to sequence deep learning approach. PloS one 14, e0216456 (2019). 8. Schuster, M. & Paliwal, K. Networks bidirectional reccurent neural. IEEE Trans Signal Proces 45, 2673–2681 (1997). 9. Yang, S. & Deravi, F. Wavelet-based EEG preprocessing for biometric applications in 2013 fourth international conference on emerging security technologies (2013), 43–46. 10. Al-Fahoum, A. S. & Al-Fraihat, A. A. Methods of EEG signal features extraction us ing linear analysis in frequency and time-frequency domains. International Scholarly Research Notices 2014 (2014). 11. Lee, H. & Choi, S. Pca+ hmm+ svm for eeg pattern classification in Seventh Inter national Symposium on Signal Processing and Its Applications, 2003. Proceedings. 1 (2003), 541–544. 12. Roy, S., Kiral-Kornek, I. & Harrer, S. ChronoNet: a deep recurrent neural network for abnormal EEG identification in Artificial Intelligence in Medicine: 17th Conference on Artificial Intelligence in Medicine, AIME 2019, Poznan, Poland, June 26–29, 2019, Proceedings 17 (2019), 47–56. 13. Zarei, A., Beheshti, H. & Asl, B. M. Detection of sleep apnea using deep neural networks and single-lead ECG signals. Biomedical Signal Processing and Control 71, 103125 (2022). 28 14. Zhao, W. et al. EEG spectral analysis in insomnia disorder: A systematic review and meta-analysis. Sleep Medicine Reviews 59, 101457 (2021). 15. Liu, D., Pang, Z. & Lloyd, S. R. A neural network method for detection of obstructive sleep apnea and narcolepsy based on pupil size and EEG. IEEE Transactions on Neural Networks 19, 308–318 (2008). |
en_US |