dc.identifier.citation |
Iizuka, A., Sakai, Y., Yamasaki, A., Honma, M., Hayakawa, Y., & Yanagisawa, Y. (2012). Bench-scale operation of a concrete sludge recycling plant. Industrial and Engineering Chemistry Research, 51(17), 6099–6104. https://doi.org/10.1021/ie300620u Marvila, M. T., Azevedo, A. R. G., Alexandre, J., Vieira, C. M. F., Zanelato, E. B., Delaqua, G. C. G., Xavier, G. C., & Monteiro, S. N. (2020). Study of the Compressive Strength of Mortars as a Function of Material Composition, Workability, and Specimen Geometry. Modeling and Simulation in Engineering, 2020. https://doi.org/10.1155/2020/1676190 ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes. ASTM International, 41(147), 1–6. https://doi.org/10.1520/C1585-13.2 Lorenzi, A., Tisbierek, F. T., Carlos, L., & Filho, S. (2007). Ultrasonic Pulse Velocity Analysis in Concrete Specimens 2. Concrete Evaluation considering Nondestructive Testing. June 2014. Ghrair, A. M., Heath, A., Paine, K., & Kronz, M. Al. (2020). Waste wash-water recycling in ready-mix concrete plants. Environments - MDPI, 7(12), 1–15. https://doi.org/10.3390/environments7120108 View of Recycling of fresh concrete exceeding and wash water in concrete mixing plants | Materiales de Construcción. (n.d.). Retrieved July 31, 2023, from https://materconstrucc.revistas.csic.es/index.php/materconstrucc/article/view/1448/1603 Arunvivek G, Maheswaran G, Kumar SS (2015) Eco-friendly solution to mitigate the toxic effects of hazardous construction industry waste by reusing in concrete for pollution control. Nat Environ Pollut Technol 14:963 Hasanbeigi, A., Price, L., & Lin, E. (2012). Emerging energy-efficiency and CO 2 emission reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16(8), 6220–6238. https://doi.org/10.1016/j.rser.2012.07.019 Kazaz, A., & Ulubeyli, S. (2016). Current Methods for the Utilization of the Fresh Concrete Waste Returned to Batching Plants. Procedia Engineering, 161, 42–46. https://doi.org/10.1016/j.proeng.2016.08.495 Maddalena, R., Roberts, J. J., & Hamilton, A. (2018). Can Portland cement be replaced by low-carbon alternative materials? A study on the thermal properties and carbon emissions of innovative blocks of cement. Journal of Cleaner Production, 186, 933– 942. https://doi.org/10.1016/j.jclepro.2018.02.138 32 | P a g e Correia, S. L., Souza, F. L., Dienstmann, G., & Segadães, A. M. (2009). Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments. Waste Management, 29(11), 2886–2891. https://doi.org/10.1016/j.wasman.2009.06.014 Tam, V. W. Y. (2008). Economic comparison of concrete recycling: A case study approach. Resources, Conservation, and Recycling, 52(5), 821–828. https://doi.org/10.1016/j.resconrec.2007.12.001 Kushwah, R. P. S., Sharma, I. C., & Chaurasia, P. (2015). Utilization of “ marble slurry ” In cement concrete replacing fine aggregate. American Journal of Engineering Research (AJER), 4(1), 55–58. R. Vinai et al., “Sustainable binders for concrete: A structured approach from waste screening to binder composition development,” Heron, vol. 60, no. 1–2, pp. 27–57, 2015. Wu, Y., Qiao, W. G., Li, Y. Z., Liu, H. N., Tang, C., Zhang, S., Zhang, X. L., Lu, J. G., & Chen, P. C. (2022). Research on Cement Slurry Using Silica Fume Instead of Fly Ash. Materials, 15(16), 1–25. https://doi.org/10.3390/ma15165626 Zimina, D. A., & Nutskova, M. V. (2019). Research of technological properties of cement slurries based on cement with expanding additives, portland, and magnesia cement. IOP Conference Series: Materials Science and Engineering, 666(1). https://doi.org/10.1088/1757-899X/666/1/012066 Iizuka, A., Sasaki, T., Honma, M., Yoshida, H., Hayakawa, Y., Yanagisawa, Y., & Yamasaki, A. (2017). Pilot-scale operation of a Concrete Sludge Recycling Plant and Simultaneous Production of Calcium Carbonate. Chemical Engineering Communications, 204(1), 79–85. https://doi.org/10.1080/00986445.2016.1235564 K, B. J., & Vivek, P. (2019). Effect of Cement Slurry Mixed Recycled Aggregate Concrete on Strength Properties. 6(3), 77–81. Hossain, M. U., Xuan, D., & Poon, C. S. (2017). Sustainable management and utilization of concrete slurry waste: A case study in Hong Kong. Waste Management, 61, 397–404. https://doi.org/10.1016/j.wasman.2017.01.038 He, X., Zheng, Z., Ma, M., Su, Y., Yang, J., Tan, H., Wang, Y., & Strnadel, B. (2020). New treatment technology: The use of wet-milling concrete slurry waste to substitute cement. Journal of Cleaner Production, 242, 118347. https://doi.org/10.1016/j.jclepro.2019.118347 Xuan, D., Zhan, B., Poon, C. S., & Zheng, W. (2016). Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. Journal of Hazardous Materials, 312, 65–72. https://doi.org/10.1016/j.jhazmat.2016.03.036 Prajapati, L., Patel, I. N., & Agrawal, V. V. (2014). Analysis Of the Strength And Durability Of The Concrete Partially Replaced By The Ceramic Slurry Waste Powder. International Journal of Emerging Technology and Advanced Engineering (IJETAE), 4(3), 725–729. 33 | P a g e Chen, Z., Lai, G., Fang, Y., Zhang, X., & Guo, Y. (2019). Research and preparation of waste cement slurry as concrete admixture. IOP Conference Series: Earth and Environmental Science, 358(5), 18–23. https://doi.org/10.1088/1755-1315/358/5/052025 Strnadel, B., Ma, M., He, X., Tan, H., Wang, Y., Su, Y., Zheng, T., & Zhao, R. (2021). A comparative study on concrete slurry waste: performance optimization from the wet milling process. Materials and Structures/Materiaux et Constructions, 54(5). https://doi.org/10.1617/s11527-021-01771-1 Correia, S. L., Souza, F. L., Dienstmann, G., & Segadães, A. M. (2009). Assessment of the recycling potential of fresh concrete waste using a factorial design of experiments. Waste Management, 29(11), 2886–2891. https://doi.org/10.1016/j.wasman.2009.06.014 Guthrie, W. S., Smith, E. D. S., Stevens, R. J., & Emery, T. W. (2020). Cement Slurry Application Using a Ready-Mixed Concrete Truck: Best Practices for Urban Pavement Construction. 2020 Intermountain Engineering, Technology and Computing, IETC 2020. https://doi.org/10.1109/IETC47856.2020.9249155 Reiterman, P., Mondschein, P., Doušová, B., Davidová, V., & Keppert, M. (2022). Utilization of concrete slurry waste for soil stabilization. Case Studies in Construction Materials, 16(March). https://doi.org/10.1016/j.cscm.2022.e00900 Iizuka, A., Sasaki, T., Honma, M., Yoshida, H., Hayakawa, Y., Yanagisawa, Y., & Yamasaki, A. (2017). Pilot-scale operation of a Concrete Sludge Recycling Plant and Simultaneous Production of Calcium Carbonate. Chemical Engineering Communications, 204(1), 79–85. https://doi.org/10.1080/00986445.2016.1235564 ASTM Standard. (2013). Standard Test Method for Determination of Moisture in Plastics by Loss in Weight. ASTM International, West Conshohocken, PA, i, 1–5. https://doi.org/10.1520/D6980-12.2 ASTM I. (1999). C109C109.Pdf. ASTM International, 04(May), 1–6. ASTM C1585-13. (2013). Standard Test Method for Measurement of Rate of Absorption of Water by Hydraulic Cement Concretes. ASTM International, 41(147), 1–6. ASTM. (2008). D792-08 Standard Test Methods for Density and Specific Gravity (Relative Density) of Plastics by Displacement. American Society for Testing and Materials, 6. |
en_US |