dc.identifier.citation |
[1] Patil, Rajesh Bhosale, Surendra. (2022). Medical Image Denoising Techniques: A Review. 4. 21-33. 10.46328/ijonest.76. [2] Y. Liang, J. Wang, S. Zhou, Y. Gong, and N. Zheng, “Incorporating image priors with deep convolutional neural networks for image super-resolution,” Neurocomputing, vol. 194, pp. 340–347, 2016. [3] H. Liu, Z. Fu, J. Han, L. Shao, S. Hou, and Y. Chu, “Single image super resolution using multi-scale deep encoder–decoder with phase congruency edge map guidance,” Information Sciences, vol. 473, pp. 44–58, 2019. [4] Z. Wang, P. Yi, K. Jiang, J. Jiang, Z. Han, T. Lu, and J. Ma, “Multi-memory convolutional neural network for video super-resolution,” IEEE Transactions on Image Processing, vol. 28, no. 5, pp. 2530–2544, 2019. [5] J. Ma, X. Wang, and J. Jiang, “Image superresolution via dense discriminative network,” IEEE Transactions on Industrial Electronics, vol. 67, no. 7, pp. 5687–5695, 2020. [6] N. Zhao, Q. Wei, A. Basarab, D. Kouam´e, and J.-Y. Tourneret, “Single image super-resolution of medical ultrasound images using a fast algorithm,” in Proc. of the IEEE 13th Int. Symposium on Biomedical Imaging. IEEE, 2016, pp. 473–476. [7] K. Diamantis, A. H. Greenaway, T. Anderson, J. A. Jensen, P. A. Dalgarno, and V. Sboros, “Super-resolution axial localization of ultrasound scatter using multi-focal imaging,” IEEE Transactions on Biomedical Engineering, vol. 65, no. 8, pp. 1840–1851, 2018. [8] K. Umehara, J. Ota, and T. Ishida, “Application of superresolution convolu tional neural network for enhancing image resolution in chest ct,” Journal of digital imaging, vol. 31, no. 4, pp. 441–450, 2018. 40 [9] A. Shocher, N. Cohen, and M. Irani, ““zero-shot” superresolution using deep internal learning,” in Proceedings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 3118–3126. [10] J. Lu and W. Liu, “Unsupervised super-resolution framework for medical ultrasound images using dilated convolutional neural networks,” in Proc. of the IEEE 3rd Int. Conf. on Image, Vision and Computing. IEEE, 2018, pp. 739–744. [11] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., . . . Bengio, Y. (2014). Generative adversarial nets. In Advances in neural information processing systems (pp. 2672–2680). [12] C. Ledig et al., “Photo-Realistic Single Image Super-Resolution Using a Gen erative Adversarial Network,” 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017, pp. 105-114, doi: 10.1109/CVPR.2017.19. [13] Wang, Xintao Yu, Ke Wu, Shixiang Gu, Jinjin Liu, Yihao Dong, Chao Loy, Chen Change Qiao, Yu Tang, Xiaoou. (2018). ESRGAN: Enhanced Super Resolution Generative Adversarial Networks. [14] Zhao, M., Wei, Y., Wong, K. K. (2022). A generative adversarial network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images. Magnetic Resonance Imaging, 85, 153-160. [15] S´anchez, I., Vilaplana, V. (2018). Brain MRI super-resolution using 3D gen erative adversarial networks. arXiv preprint arXiv:1812.11440. [16] Zhang, L., Zhang, J. (2022). Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss. PeerJ Computer Science, 8, e873. [17] Maeda, S. (2020). Unpaired image super-resolution using pseudo-supervision. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 291-300) 41 [18] Liu, H., Liu, J., Hou, S., Tao, T., Han, J. (2021). Perception consistency ultrasound image super-resolution via self-supervised CycleGAN. Neural Com puting and Applications, 1-11. [19] C. Dong, C. C. Loy, K. He, and X. Tang, “Image superresolution using deep convolutional networks,” IEEE transactions on pattern analysis and machine intelligence, vol. 38, no. 2, pp. 295–307, 2016. [20] Xia, P., Tahara, T., Kakue, T. et al. Performance comparison of bi linear interpolation, bicubic interpolation, and B-spline interpolation in parallel phase-shifting digital holography. OPT REV 20, 193–197 (2013). https://doi.org/10.1007/s10043-013-0033-2 [21] Zhang, Saiping Yang, Fuzheng Wan, Shuai Di, Peiyun. (2020). Spher ical Lanczos Interpolation in Planar Projection or Format Conversions of Panoramic Videos. IEEE Access. PP. 1-1. 10.1109/ACCESS.2020.2964789. [22] A. Hor´e and D. Ziou, “Image Quality Metrics: PSNR vs. SSIM,” 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 2366-2369, doi: 10.1109/ICPR.2010.579. [23] Xu, Bing Wang, Naiyan Chen, Tianqi Li, Mu. (2015). Empirical Evaluation of Rectified Activations in Convolutional Network. [24] H. R. Sheikh, A. C. Bovik and G. de Veciana, “An information fidelity cri terion for image quality assessment using natural scene statistics,” in IEEE Transactions on Image Processing, vol. 14, no. 12, pp. 2117-2128, Dec. 2005, doi: 10.1109/TIP.2005.859389. |
en_US |