dc.identifier.citation |
[1] B. F. Green, A. K. Wolf, C. L. Chomsky, and K. Laughery, “Baseball: An automatic question-answerer,” in IRE-AIEE-ACM ’61 (Western), 1961. [2] P. Rajpurkar, J. Zhang, K. Lopyrev, and P. Liang, “SQuAD: 100,000+ questions for machine comprehension of text,” in Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, Texas: Association for Computational Linguistics, Nov. 2016, pp. 2383–2392. DOI: 10.18653/v1/ D16-1264. [Online]. Available: https://aclanthology.org/D16-1264. [3] Z. Yang, P. Qi, S. Zhang, et al., “HotpotQA: A dataset for diverse, explainable multi-hop question answer ing,” in Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, Belgium: Association for Computational Linguistics, Nov. 2018, pp. 2369–2380. DOI: 10.18653/v1/D18- 1259. [Online]. Available: https://aclanthology.org/D18-1259. [4] W. Chen, H. Zha, Z. Chen, W. Xiong, H. Wang, and W. Y. Wang, “HybridQA: A dataset of multi-hop question answering over tabular and textual data,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov. 2020, pp. 1026–1036. DOI: 10.18653/v1/2020.findings-emnlp.91. [Online]. Available: https://aclanthology.org/ 2020.findings-emnlp.91. [5] T. Koˇciský, J. Schwarz, P. Blunsom, et al., “The NarrativeQA reading comprehension challenge,” Transac tions of the Association for Computational Linguistics, vol. 6, pp. 317–328, 2018. DOI: 10.1162/tacl_a_ 00023. [Online]. Available: https://aclanthology.org/Q18-1023. [6] D. Khashabi, S. Chaturvedi, M. Roth, S. Upadhyay, and D. Roth, “Looking beyond the surface: A challenge set for reading comprehension over multiple sentences,” in Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long Papers), New Orleans, Louisiana: Association for Computational Linguistics, Jun. 2018, pp. 252–262. DOI: 10.18653/v1/N18-1023. [Online]. Available: https://aclanthology.org/N18- 1023. [7] T. Tahsin Mayeesha, A. Md Sarwar, and R. M. Rahman, “Deep learning based question answering system in bengali,” Journal of Information and Telecommunication, vol. 5, no. 2, pp. 145–178, 2021. [8] P. Rajpurkar, R. Jia, and P. Liang, “Know what you don’t know: Unanswerable questions for SQuAD,” in Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Melbourne, Australia: Association for Computational Linguistics, Jul. 2018, pp. 784–789. DOI: 10.18653/v1/P18-2124. [Online]. Available: https://aclanthology.org/P18-2124. 37 REFERENCES [9] M. A. Haque, S. Sultana, M. J. Islam, M. A. Islam, and J. A. Ovi, “Factoid question answering over bangla comprehension,” in 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT), 2020, pp. 1–8. DOI: 10.1109/ISMSIT50672.2020.9254680. [10] T. T. Aurpa, R. K. Rifat, M. S. Ahmed, M. M. Anwar, and A. B. M. S. Ali, “Reading comprehension based question answering system in bangla language with transformer-based learning,” Heliyon, vol. 8, no. 10, e11052, 2022, ISSN: 2405-8440. DOI: https://doi.org/10.1016/j.heliyon.2022.e11052. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S2405844022023404. [11] A. Bhattacharjee, T. Hasan, W. Ahmad, et al., “BanglaBERT: Language model pretraining and bench marks for low-resource language understanding evaluation in Bangla,” in Findings of the Association for Computational Linguistics: NAACL 2022, Seattle, United States: Association for Computational Lin guistics, Jul. 2022, pp. 1318–1327. DOI: 10.18653/v1/2022.findings-naacl.98. [Online]. Available: https://aclanthology.org/2022.findings-naacl.98. [12] J. H. Clark, E. Choi, M. Collins, et al., “TyDi QA: A benchmark for information-seeking question answering in typologically diverse languages,” Transactions of the Association for Computational Linguistics, vol. 8, pp. 454–470, 2020. DOI: 10.1162/tacl_a_00317. [Online]. Available: https://aclanthology.org/ 2020.tacl-1.30. [13] S. Wang, “Machine comprehension using match-lstm and answer pointer,” Aug. 2016. [14] T. Koˇciský, J. Schwarz, P. Blunsom, et al., “The NarrativeQA Reading Comprehension Challenge,” Transac tions of the Association for Computational Linguistics, vol. 6, pp. 317–328, May 2018, ISSN: 2307-387X. DOI: 10.1162/tacl_a_00023. eprint: https://direct.mit.edu/tacl/article-pdf/doi/10.1162/ tacl\_a\_00023/1567652/tacl\_a\_00023.pdf. [Online]. Available: https://doi.org/10.1162/ tacl%5C_a%5C_00023. [15] Y. Chang, M. Narang, H. Suzuki, G. Cao, J. Gao, and Y. Bisk, “Webqa: Multihop and multimodal qa,” Sep. 2021. [16] J. Chen and G. Durrett, “Understanding dataset design choices for multi-hop reasoning,” arXiv preprint arXiv:1904.12106, 2019. [17] M. Keya, A. K. M. Masum, S. Abujar, B. Majumdar, and S. Hossain, “Bengali question answering system using seq2seq learning based on general knowledge dataset,” Jul. 2020. DOI: 10.1109/ICCCNT49239. 2020.9225605. [18] W. Chen, H. Zha, Z. Chen, W. Xiong, H. Wang, and W. Y. Wang, “HybridQA: A dataset of multi-hop question answering over tabular and textual data,” in Findings of the Association for Computational Linguistics: EMNLP 2020, Online: Association for Computational Linguistics, Nov. 2020, pp. 1026–1036. DOI: 10.18653/v1/2020.findings-emnlp.91. [Online]. Available: https://aclanthology.org/ 2020.findings-emnlp.91. [19] F. Zhu, W. Lei, Y. Huang, et al., “TAT-QA: A question answering benchmark on a hybrid of tabular and textual content in finance,” in Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers), Online: Association for Computational Linguistics, Aug. 2021, pp. 3277–3287. DOI: 10.18653/ v1/2021.acl-long.254. [Online]. Available: https://aclanthology.org/2021.acl-long.254. |
en_US |