dc.identifier.citation |
Adesina, O. T., Jamiru, T., Sadiku, E. R., Ogunbiyi, O. F., & Adegbola, T. A. (2019). Water absorption and thermal degradation behavior of graphene reinforced poly(lactic) acid nanocomposite. IOP Conference Series: Materials Science and Engineering, 627(1). https://doi.org/10.1088/1757-899X/627/1/012015 Ahmad, A. F., Ab Aziz, S., Abbas, Z., Obaiys, S. J., Matori, K. A., Zaid, M. H. M., Raad, H. K., & Aliyu, U. S. ad. (2019). Chemically reduced graphene oxide-reinforced poly(lactic acid)/poly(ethylene glycol) nanocomposites: Preparation, characterization, and applications in electromagnetic interference shielding. Polymers, 11(4). https://doi.org/10.3390/polym11040661 Alexopoulos, N. D., Paragkamian, Z., Poulin, P., & Kourkoulis, S. K. (2017). Fracture related mechanical properties of low and high graphene reinforcement of epoxy nanocomposites. Composites Science and Technology, 150, 194–204. https://doi.org/10.1016/j.compscitech.2017.07.030 Altman, G. H., Diaz, F., Jakuba, C., Calabro, T., Horan, R. L., Chen, J., Lu, H., Richmond, J., & Kaplan, D. L. (2003). Silk-based biomaterials. In Biomaterials (Vol. 24). Ansari, Md. T. A., Singh, K. K., & Azam, Md. S. (2020). Effect of Ply Stacking and Fiber Volume Fraction on ILSS of Woven GFRP Laminates (pp. 561–568). https://doi.org/10.1007/978-981-15-2647-3_51 Arriagada, P., Palza, H., Palma, P., Flores, M., & Caviedes, P. (2018). Poly(lactic acid) composites based on graphene oxide particles with antibacterial behavior enhanced by electrical stimulus and biocompatibility. Journal of Biomedical Materials Research - Part A, 106(4), 1051–1060. https://doi.org/10.1002/jbm.a.36307 Ashok Kumar, S. S., Bashir, S., Ramesh, K., & Ramesh, S. (2022). A comprehensive review: Super hydrophobic graphene nanocomposite coatings for underwater and wet applications to enhance corrosion resistance. FlatChem, 31, 100326. https://doi.org/10.1016/j.flatc.2021.100326 Azlin, M. N. M., Sapuan, S. M., Zuhri, M. Y. M., & Zainudin, E. S. (2022). Effect of stacking sequence and fiber content on mechanical and morphological properties of woven kenaf/polyester fiber reinforced polylactic acid (PLA) hybrid laminated composites. 77 Journal of Materials Research and Technology, 16, 1190–1201. https://doi.org/10.1016/j.jmrt.2021.12.046 Baigh, T. A., Nanzeeba, F., Hamim, H. R., & Habib, M. A. (2023). A comprehensive study on the effect of hybridization and stacking sequence in fabricating cotton-blended jute and pineapple leaf fibre biocomposites. Heliyon, 9(9), e19792. https://doi.org/10.1016/j.heliyon.2023.e19792 Bajpai, P. K., Singh, I., & Madaan, J. (2013). Tribological behavior of natural fiber reinforced PLA composites. Wear, 297(1–2), 829–840. https://doi.org/10.1016/j.wear.2012.10.019 Bajpai, P. K., Singh, I., & Madaan, J. (2014). Development and characterization of PLA based green composites: A review. In Journal of Thermoplastic Composite Materials (Vol. 27, Issue 1, pp. 52–81). https://doi.org/10.1177/0892705712439571 Balaji, K. V., Shirvanimoghaddam, K., & Naebe, M. (2024). Multifunctional basalt fiber polymer composites enabled by carbon nanotubes and graphene. Composites Part B: Engineering, 268. https://doi.org/10.1016/j.compositesb.2023.111070 Barrasa, J. O., Ferrández-Montero, A., Ferrari, B., & Pastor, J. Y. (2021). Characterisation and modelling of pla filaments and evolution with time. Polymers, 13(17). https://doi.org/10.3390/polym13172899 Bax, B., & Müssig, J. (2008). Impact and tensile properties of PLA/Cordenka and PLA/flax composites. In Composites Science and Technology (Vol. 68, Issues 7–8, pp. 1601– 1607). https://doi.org/10.1016/j.compscitech.2008.01.004 Bhagwat, P. M., Ramachandran, M., & Raichurkar, P. (2017). Mechanical Properties of Hybrid Glass/Carbon Fiber Reinforced Epoxy Composites. Materials Today: Proceedings, 4(8), 7375–7380. https://doi.org/10.1016/j.matpr.2017.07.067 Buasri, A., Chaiyut, N., Loryuenyong, V., Buasri, A., Chaiyut, N., Loryuenyong, V., Jaritkaun, N., Yavilas, T., & Yoorengdech, N. (n.d.). Mechanical and thermal properties of silk fiber reinforced poly(lactic acid) biocomposites. In OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS (Vol. 7, Issue 11). https://www.researchgate.net/publication/287696496 Candotto Carniel, F., Fortuna, L., Zanelli, D., Garrido, M., Vázquez, E., González, V. J., Prato, M., & Tretiach, M. (2021). Graphene environmental biodegradation: Wood 78 degrading and saprotrophic fungi oxidize few-layer graphene. Journal of Hazardous Materials, 414. https://doi.org/10.1016/j.jhazmat.2021.125553 Cao, K., Feng, S., Han, Y., Gao, L., Hue Ly, T., Xu, Z., & Lu, Y. (2020). Elastic straining of free-standing monolayer graphene. Nature Communications, 11(1). https://doi.org/10.1038/s41467-019-14130-0 Cao, L., Wang, Y., Dong, P., Vinod, S., Tijerina, J. T., Ajayan, P. M., Xu, Z., & Lou, J. (2016). Interphase induced dynamic self-stiffening in graphene-based polydimethylsiloxane nanocomposites. Small, 12(27), 3723–3731. https://doi.org/10.1002/smll.201600170 Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116–125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045 Castro-Aguirre, E., Iñiguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. (2016). Poly(lactic acid)—Mass production, processing, industrial applications, and end of life. In Advanced Drug Delivery Reviews (Vol. 107, pp. 333–366). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.03.010 Chairman, C. A., & Kumaresh Babu, S. P. (2013). Mechanical and abrasive wear behavior of glass and basalt fabric‐reinforced epoxy composites. Journal of Applied Polymer Science, 130(1), 120–130. https://doi.org/10.1002/app.39154 Charfi, M. A., Mathieu, R., Chatelain, J. F., Ouellet-Plamondon, C., & Lebrun, G. (2020). Effect of graphene additive on flexural and interlaminar shear strength properties of carbon fiber-reinforced polymer composite. Journal of Composites Science, 4(4). https://doi.org/10.3390/jcs4040162 Chen, H., Mi, G., Li, P., Huang, X., & Cao, C. (2020). Microstructure and tensile properties of graphene-oxide-reinforced high-temperature titanium-alloy-matrix composites. Materials, 13(15). https://doi.org/10.3390/ma13153358 Chen, X., Li, Y., & Gu, N. (2010). A novel basalt fiber-reinforced polylactic acid composite for hard tissue repair. Biomedical Materials, 5(4), 044104. https://doi.org/10.1088/1748- 6041/5/4/044104 79 Cheng, S., Lau, K. tak, Liu, T., Zhao, Y., Lam, P. M., & Yin, Y. (2009). Mechanical and thermal properties of chicken feather fiber/PLA green composites. Composites Part B: Engineering, 40(7), 650–654. https://doi.org/10.1016/j.compositesb.2009.04.011 Cheung, H. Y., Lau, K. T., Pow, Y. F., Zhao, Y. Q., & Hui, D. (2010). Biodegradation of a silkworm silk/PLA composite. Composites Part B: Engineering, 41(3), 223–228. https://doi.org/10.1016/j.compositesb.2009.09.004 Chiaravalloti, I., Theunissen, N., Zhang, S., Wang, J., Sun, F., Ahmed, A. A., Pihlap, E., Reinhard, C. T., & Planavsky, N. J. (2023). Mitigation of soil nitrous oxide emissions during maize production with basalt amendments. Frontiers in Climate, 5. https://doi.org/10.3389/fclim.2023.1203043 Chism, R., Maillard, P., Gottschalk, L. C., Partridge, A., Lea, S. M., Hannan, C. H., & Hannan, R. S. (1951). Amino-acids of Silk Sericin. In Biochim. Biophys. Acta (Vol. 167). Conceição, L. T., Silva, G. N., Holsback, H. M. S., Oliveira, C. de F., Marcante, N. C., Martins, É. de S., Santos, F. L. de S., & Santos, E. F. (2022a). Potential of basalt dust to improve soil fertility and crop nutrition. Journal of Agriculture and Food Research, 10, 100443. https://doi.org/10.1016/j.jafr.2022.100443 Conceição, L. T., Silva, G. N., Holsback, H. M. S., Oliveira, C. de F., Marcante, N. C., Martins, É. de S., Santos, F. L. de S., & Santos, E. F. (2022b). Potential of basalt dust to improve soil fertility and crop nutrition. Journal of Agriculture and Food Research, 10, 100443. https://doi.org/10.1016/j.jafr.2022.100443 Czigány, T. (2005). Discontinuous Basalt Fiber-Reinforced Hybrid Composites. Polymer Composites, 309–328. https://doi.org/10.1007/0-387-26213-X_17 Darshan, S. M., & Suresha, B. (2021). Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Materials Today: Proceedings, 43, 986–994. https://doi.org/10.1016/j.matpr.2020.07.618 Deák, T., & Czigány, T. (2009). Chemical Composition and Mechanical Properties of Basalt and Glass Fibers: A Comparison. Textile Research Journal, 79(7), 645–651. https://doi.org/10.1177/0040517508095597 80 DeStefano, V., Khan, S., & Tabada, A. (2020). Applications of PLA in modern medicine. Engineered Regeneration, 1, 76–87. https://doi.org/10.1016/j.engreg.2020.08.002 Dhand, V., Mittal, G., Rhee, K. Y., Park, S.-J., & Hui, D. (2015). A short review on basalt fiber reinforced polymer composites. Composites Part B: Engineering, 73, 166–180. https://doi.org/10.1016/j.compositesb.2014.12.011 Dias, D. P., & Thaumaturgo, C. (2005). Fracture toughness of geopolymeric concretes reinforced with basalt fibers. Cement and Concrete Composites, 27(1), 49–54. https://doi.org/10.1016/j.cemconcomp.2004.02.044 Dimiev, A. M., Ceriotti, G., Metzger, A., Kim, N. D., & Tour, J. M. (2016). Chemical mass production of graphene nanoplatelets in ∼100% yield. ACS Nano, 10(1), 274–279. https://doi.org/10.1021/acsnano.5b06840 Ding, W., Jahani, D., Chang, E., Alemdar, A., Park, C. B., & Sain, M. (2016). Development of PLA/cellulosic fiber composite foams using injection molding: Crystallization and foaming behaviors. Composites Part A: Applied Science and Manufacturing, 83, 130– 139. https://doi.org/10.1016/j.compositesa.2015.10.003 Dorigato, A., & Pegoretti, A. (2012a). Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 46(15), 1773–1785. https://doi.org/10.1177/0021998311425620 Dorigato, A., & Pegoretti, A. (2012b). Fatigue resistance of basalt fibers-reinforced laminates. Journal of Composite Materials, 46(15), 1773–1785. https://doi.org/10.1177/0021998311425620 Egbo, M. K. (2021). A fundamental review on composite materials and some of their applications in biomedical engineering. In Journal of King Saud University - Engineering Sciences (Vol. 33, Issue 8, pp. 557–568). King Saud University. https://doi.org/10.1016/j.jksues.2020.07.007 ercopur2012. (n.d.). Eshkoor, R. A., Oshkovr, S. A., Sulong, A. B., Zulkifli, R., Ariffin, A. K., & Azhari, C. H. (2013). Comparative research on the crashworthiness characteristics of woven natural silk/epoxy composite tubes. Materials and Design, 47, 248–257. https://doi.org/10.1016/j.matdes.2012.11.030 81 Ever J. Barbero. (n.d.). Introduction to Composite Materials Design. Routledge. Farah, S., Anderson, D. G., & Langer, R. (2016). Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review. In Advanced Drug Delivery Reviews (Vol. 107, pp. 367–392). Elsevier B.V. https://doi.org/10.1016/j.addr.2016.06.012 Ferreira, W. H., Dahmouche, K., & Andrade, C. T. (2019). Tuning the mechanical and electrical conductivity properties of graphene-based thermoplastic starch/poly(lactic acid) hybrids. Polymer Composites, 40(S2), E1131–E1142. https://doi.org/10.1002/pc.24902 Finniss, A., Agarwal, S., & Gupta, R. (2016). Retarding hydrolytic degradation of polylactic acid: Effect of induced crystallinity and graphene addition. Journal of Applied Polymer Science, 133(43). https://doi.org/10.1002/app.44166 Ganesan, T. (2008). Experimental characterization of interlaminar shear strength. In Delamination Behaviour of Composites: A volume in Woodhead Publishing Series in Composites Science and Engineering (pp. 117–137). Elsevier Ltd. https://doi.org/10.1533/9781845694821.1.117 Gao, Y., Picot, O. T., Bilotti, E., & Peijs, T. (2017). Influence of filler size on the properties of poly(lactic acid) (PLA)/graphene nanoplatelet (GNP) nanocomposites. European Polymer Journal, 86, 117–131. https://doi.org/10.1016/j.eurpolymj.2016.10.045 Gaweł, A., Kuciel, S., Liber-Kneć, A., & Mierzwiński, D. (2023). Examination of Low Cyclic Fatigue Tests and Poisson’s Ratio Depending on the Different Infill Density of Polylactide (PLA) Produced by the Fused Deposition Modeling Method. Polymers, 15(7). https://doi.org/10.3390/polym15071651 Ghaffari, S., Khalid, S., Butler, M., & Naguib, H. E. (2015). Development of High Thermally Conductive and Electrically Insulative Polylactic Acid (PLA) and Hexagonal Boron Nitride (hBN) Composites for Electronic Packaging Applications. Journal of Biobased Materials and Bioenergy, 9(2), 145–154. https://doi.org/10.1166/jbmb.2015.1516 Gong, L., Zhang, F., Peng, X., Scarpa, F., Huang, Z., Tao, G., Liu, H. Y., Zhou, H., & Zhou, H. (2022). Improving the damping properties of carbon fiber reinforced polymer 82 composites by interfacial sliding of oriented multilayer graphene oxide. Composites Science and Technology, 224. https://doi.org/10.1016/j.compscitech.2022.109309 Guler, O., & Bagci, N. (2020). A short review on mechanical properties of graphene reinforced metal matrix composites. In Journal of Materials Research and Technology (Vol. 9, Issue 3, pp. 6808–6833). Elsevier Editora Ltda. https://doi.org/10.1016/j.jmrt.2020.01.077 Gunti, R., Ratna Prasad, A. V., & Gupta, A. V. S. S. K. S. (2018). Mechanical and degradation properties of natural fiber-reinforced PLA composites: Jute, sisal, and elephant grass. Polymer Composites, 39(4), 1125–1136. https://doi.org/10.1002/pc.24041 Gupta K., B. N. V. S. G., Patnaik, S., Prusty, R. K., & Ray, B. C. (2023). Simultaneous enhancement in interlaminar– shear strength and fracture toughness through nano Al2O3 dispersion in glass fiber/IPN multiscale composites. Composites Part A: Applied Science and Manufacturing, 168, 107475. https://doi.org/10.1016/j.compositesa.2023.107475 Hartmann, M. H. (n.d.). High Molecular Weight Polylactic Acid Polymers. He Chenghong, Li Yubin, Zhang Zuoguang, & Sun Zhijie. (2008). Impact Damage Modes and Residual Flexural Properties of Composites Beam. Journal of Reinforced Plastics and Composites, 27(11), 1163–1175. https://doi.org/10.1177/0731684407087077 He, H., Yang, P., Duan, Z., Wang, Z., & Liu, Y. (2020). Reinforcing effect of hybrid nano coating on mechanical properties of basalt fiber/poly(lactic acid) environmental composites. Composites Science and Technology, 199. https://doi.org/10.1016/j.compscitech.2020.108372 Hinchcliffe, S. A., Hess, K. M., & Srubar, W. V. (2016). Experimental and theoretical investigation of prestressed natural fiber-reinforced polylactic acid (PLA) composite materials. Composites Part B: Engineering, 95, 346–354. https://doi.org/10.1016/j.compositesb.2016.03.089 Huda, M. S., Drzal, L. T., Mohanty, A. K., & Misra, M. (2008). Effect of fiber surface treatments on the properties of laminated biocomposites from poly(lactic acid) (PLA) and kenaf fibers. Composites Science and Technology, 68(2), 424–432. https://doi.org/10.1016/j.compscitech.2007.06.022 83 Islam, M. H., Afroj, S., Uddin, M. A., Andreeva, D. V., Novoselov, K. S., & Karim, N. (2022). Graphene and CNT-Based Smart Fiber-Reinforced Composites: A Review. In Advanced Functional Materials (Vol. 32, Issue 40). John Wiley and Sons Inc. https://doi.org/10.1002/adfm.202205723 Jamshaid, H., & Mishra, R. (2016). A green material from rock: basalt fiber – a review. The Journal of The Textile Institute, 107(7), 923–937. https://doi.org/10.1080/00405000.2015.1071940 Kamatchi, T., Saravanan, R., Rangappa, S. M., & Siengchin, S. (2023). Effect of filler content and size on the mechanical properties of graphene-filled natural fiber-based nanocomposites. Biomass Conversion and Biorefinery, 13(12), 11311–11320. https://doi.org/10.1007/s13399-023-03911-9 Kashi, S., Gupta, R. K., Baum, T., Kao, N., & Bhattacharya, S. N. (2018). Phase transition and anomalous rheological behaviour of polylactide/graphene nanocomposites. Composites Part B: Engineering, 135, 25–34. https://doi.org/10.1016/j.compositesb.2017.10.002 Kashi, S., Gupta, R. K., Kao, N., Hadigheh, S. A., & Bhattacharya, S. N. (2018). Influence of graphene nanoplatelet incorporation and dispersion state on thermal, mechanical and electrical properties of biodegradable matrices. Journal of Materials Science and Technology, 34(6), 1026–1034. https://doi.org/10.1016/j.jmst.2017.10.013 Katagata, Y., Kikuchi, A., & Shimura, K. (n.d.). Characterization of the Crystalline-Region Peptides Prepared from the Posterior Silk Gland Fibroin. Katsiropoulos, C. V., Pappas, P., Koutroumanis, N., Kokkinos, A., & Galiotis, C. (2022). Enhancement of damping response in polymers and composites by the addition of graphene nanoplatelets. Composites Science and Technology, 227. https://doi.org/10.1016/j.compscitech.2022.109562 Kerni, L., Singh, S., Patnaik, A., & Kumar, N. (2020). A review on natural fiber reinforced composites. Materials Today: Proceedings, 28, 1616–1621. https://doi.org/10.1016/j.matpr.2020.04.851 Khalid, M. Y., Al Rashid, A., Arif, Z. U., Ahmed, W., Arshad, H., & Zaidi, A. A. (2021). Natural fiber reinforced composites: Sustainable materials for emerging applications. In 84 Results in Engineering (Vol. 11). Elsevier B.V. https://doi.org/10.1016/j.rineng.2021.100263 Khan, M. M. R., Tsukada, M., Gotoh, Y., Morikawa, H., Freddi, G., & Shiozaki, H. (2010). Physical properties and dyeability of silk fibers degummed with citric acid. Bioresource Technology, 101(21), 8439–8445. https://doi.org/10.1016/j.biortech.2010.05.100 King, A., Johnson, G., Engelberg, D., Ludwig, W., & Marrow, J. (2008). Observations of intergranular stress corrosion cracking in a grain-mapped polycrystal. Science, 321(5887), 382–385. https://doi.org/10.1126/science.1156211 Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (n.d.). Composites with carbon nanotubes and graphene: An outlook. https://doi.org/https://doi.org/10.1126/science.aat7439 Kinloch, I. A., Suhr, J., Lou, J., Young, R. J., & Ajayan, P. M. (2018). Composites with carbon nanotubes and graphene: An outlook. Science, 362(6414), 547–553. https://doi.org/10.1126/science.aat7439 Kogiso, T., Hirose, K., & Takahashi, E. (1998). Melting experiments on homogeneous mixtures of peridotite and basalt: application to the genesis of ocean island basalts. Earth and Planetary Science Letters, 162(1–4), 45–61. https://doi.org/10.1016/S0012- 821X(98)00156-3 Kulkarni, P., Bhattacharjee, A., & Nanda, B. K. (2018). Study of damping in composite beams. Materials Today: Proceedings, 5(2), 7061–7067. https://doi.org/10.1016/j.matpr.2017.11.370 Kurian, M. (2021). Recent progress in the chemical reduction of graphene oxide by green reductants–A Mini review. In Carbon Trends (Vol. 5). Elsevier Ltd. https://doi.org/10.1016/j.cartre.2021.100120 Kurniawan, D., Kim, B. S., Lee, H. Y., & Lim, J. Y. (2012). Atmospheric pressure glow discharge plasma polymerization for surface treatment on sized basalt fiber/polylactic acid composites. Composites Part B: Engineering, 43(3), 1010–1014. https://doi.org/10.1016/j.compositesb.2011.11.007 Lakin, I. I., Abbas, Z., Azis, R. S., & Alhaji, I. A. (2020). Complex permittivity and electromagnetic interference shielding effectiveness of opefb fiber-polylactic acid filled 85 with reduced graphene oxide. Materials, 13(20), 1–12. https://doi.org/10.3390/ma13204602 Lawrence, B. D. (2014). Processing of Bombyx mori silk for biomedical applications. In Silk Biomaterials for Tissue Engineering and Regenerative Medicine (pp. 78–99). Elsevier Ltd. https://doi.org/10.1533/9780857097064.1.78 Lee, S. M., Cho, D., Park, W. H., Lee, S. G., Han, S. O., & Drzal, L. T. (2005). Novel silk/poly(butylene succinate) biocomposites: The effect of short fibre content on their mechanical and thermal properties. Composites Science and Technology, 65(3–4), 647– 657. https://doi.org/10.1016/j.compscitech.2004.09.023 Li, D., Jiang, Y., Lv, S., Liu, X., Gu, J., Chen, Q., & Zhang, Y. (2018). Preparation of plasticized poly (lactic acid) and its influence on the properties of composite materials. PLoS ONE, 13(3). https://doi.org/10.1371/journal.pone.0193520 Li, M., Pu, Y., Thomas, V. M., Yoo, C. G., Ozcan, S., Deng, Y., Nelson, K., & Ragauskas, A. J. (2020). Recent advancements of plant-based natural fiber–reinforced composites and their applications. Composites Part B: Engineering, 200, 108254. https://doi.org/10.1016/j.compositesb.2020.108254 Li, Z., Ma, J., Ma, H., & Xu, X. (2018). Properties and Applications of Basalt Fiber and Its Composites. IOP Conference Series: Earth and Environmental Science, 186, 012052. https://doi.org/10.1088/1755-1315/186/2/012052 Lim, S., Park, H., Yamamoto, G., Lee, C., & Suk, J. W. (2021). Measurements of the electrical conductivity of monolayer graphene flakes using conductive atomic force microscopy. Nanomaterials, 11(10). https://doi.org/10.3390/nano11102575 Liu, Q., Shaw, M. T., Parnas, R. S., & McDonnell, A. (2006). Investigation of basalt fiber composite mechanical properties for applications in transportation. Polymer Composites, 27(1), 41–48. https://doi.org/10.1002/pc.20162 Liu, S., Wu, G., Yu, J., Chen, X., Guo, J., Zhang, X., Wang, P., & Yin, X. (2019). Surface modification of basalt fiber (BF) for improving compatibilities between BF and poly lactic acid (PLA) matrix. Composite Interfaces, 26(4), 275–290. https://doi.org/10.1080/09276440.2018.1499353 86 Liu, T., Yu, F., Yu, X., Zhao, X., Lu, A., & Wang, J. (2012). Basalt fiber reinforced and elastomer toughened polylactide composites: Mechanical properties, rheology, crystallization, and morphology. Journal of Applied Polymer Science, 125(2), 1292– 1301. https://doi.org/10.1002/app.34995 Liu, X., Metcalf, T. H., Robinson, J. T., Houston, B. H., & Scarpa, F. (2012). Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Letters, 12(2), 1013–1017. https://doi.org/10.1021/nl204196v Liu, Z., Zhao, J., Lu, K., Wang, Z., Yin, L., Zheng, H., Wang, X., Mao, L., & Xing, B. (2022). Biodegradation of Graphene Oxide by Insects ( Tenebrio molitor Larvae): Role of the Gut Microbiome and Enzymes. Environmental Science & Technology, 56(23), 16737– 16747. https://doi.org/10.1021/acs.est.2c03342 Lu, L., Peter, S. J., Lyman, M. D., Lai, H.-L., Leite, S. M., Tamada, J. A., Uyama, S., Vacanti, J. P., Langer, R., & Mikos, A. G. (2000). In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. In Biomaterials (Vol. 21). Luo, B., Liu, S., & Zhi, L. (2012). Chemical approaches toward graphene-based nanomaterials and their applications in energy-related areas. In Small (Vol. 8, Issue 5, pp. 630–646). https://doi.org/10.1002/smll.201101396 Ma, B., Wang, X., He, Y., Dong, Z., Zhang, X., Chen, X., & Liu, T. (2021). Effect of poly(lactic acid) crystallization on its mechanical and heat resistance performances. Polymer, 212. https://doi.org/10.1016/j.polymer.2020.123280 Martone, A., Antonucci, V., Zarrelli, M., & Giordano, M. (2016). A simplified approach to model damping behaviour of interleaved carbon fibre laminates. Composites Part B: Engineering, 97, 103–110. https://doi.org/10.1016/j.compositesb.2016.04.048 Mazzi, S., Zulker, E., Buchicchio, J., Anderson, B., & Hu, X. (2014). Comparative thermal analysis of Eri, Mori, Muga, and Tussar silk cocoons and fibroin fibers. Journal of Thermal Analysis and Calorimetry, 116(3), 1337–1343. https://doi.org/10.1007/s10973- 013-3631-0 Meinel, L., Hofmann, S., Karageorgiou, V., Kirker-Head, C., McCool, J., Gronowicz, G., Zichner, L., Langer, R., Vunjak-Novakovic, G., & Kaplan, D. L. (2005). The 87 inflammatory responses to silk films in vitro and in vivo. Biomaterials, 26(2), 147–155. https://doi.org/10.1016/j.biomaterials.2004.02.047 Militky, J., & Kovacic, V. (1996). Ultimate Mechanical Properties of Basalt Filaments. Textile Research Journal, 66(4), 225–229. https://doi.org/10.1177/004051759606600407 Militký, J., Kovačič, V., & Rubnerová, J. (2002). Influence of thermal treatment on tensile failure of basalt fibers. Engineering Fracture Mechanics, 69(9), 1025–1033. https://doi.org/10.1016/S0013-7944(01)00119-9 Mittal, G., & Rhee, K. Y. (2021). Electrophoretic deposition of graphene on basalt fiber for composite applications. Nanotechnology Reviews, 10(1), 158–165. https://doi.org/10.1515/ntrev-2021-0011 Mittal, V., & Chaudhry, A. U. (2015). Polymer - Graphene nanocomposites: Effect of polymer matrix and filler amount on properties. Macromolecular Materials and Engineering, 300(5), 510–521. https://doi.org/10.1002/mame.201400392 Mohanty, A. K., Wibowo, A., Misra, M., & Drzal, L. T. (2004). Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites. Composites Part A: Applied Science and Manufacturing, 35(3), 363–370. https://doi.org/10.1016/j.compositesa.2003.09.015 Monaldo, E., Nerilli, F., & Vairo, G. (2019). Basalt-based fiber-reinforced materials and structural applications in civil engineering. Composite Structures, 214, 246–263. https://doi.org/10.1016/J.COMPSTRUCT.2019.02.002 Mondal, M., Trivedy, K., & Nirmal Kumar, S. (2007). The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn.,-a review. In Caspian Journal of Environmental Sciences Caspian J. Env. Sci (Vol. 5, Issue 2). http://research.guilan.ac.ir/cjesorwww.cjes.net Monteiro, S. N., Drelich, J. W., Lopera, H. A. C., Nascimento, L. F. C., da Luz, F. S., da Silva, L. C., dos Santos, J. L., da Costa Garcia Filho, F., de Assis, F. S., Lima, É. P., Pereira, A. C., Simonassi, N. T., Oliveira, M. S., da Cruz Demosthenes, L. C., Costa, U. O., Reis, R. H. M., & Bezerra, W. B. A. (2019). Natural Fibers Reinforced Polymer Composites Applied in Ballistic Multilayered Armor for Personal Protection—An Overview. Minerals, Metals and Materials Series, 33–47. https://doi.org/10.1007/978-3- 030-10383-5_4 88 Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003 Najafi, M., Zahid, M., Ceseracciu, L., Safarpour, M., Athanassiou, A., & Bayer, I. S. (2022). Polylactic acid-graphene emulsion ink based conductive cotton fabrics. Journal of Materials Research and Technology, 18, 5197–5211. https://doi.org/10.1016/j.jmrt.2022.04.119 Naveen, J., Jawaid, M., Zainudin, E. S., Thariq Hameed Sultan, M., & Yahaya, R. (2019). Improved Mechanical and Moisture-Resistant Properties of Woven Hybrid Epoxy Composites by Graphene Nanoplatelets (GNP). Materials, 12(8), 1249. https://doi.org/10.3390/ma12081249 Nobre, J. P., Smit, T. C., Reid, R., Qhola, Q., Wu, T., & Niendorf, T. (2024). Stress Evaluation Through the Layers of a Fibre-Metal Hybrid Composite by IHD: An Experimental Study. Experimental Mechanics, 64(4), 487–500. https://doi.org/10.1007/s11340-024- 01047-z Novoselov, K. S., Geim, A. K., Morozov, S. V, Jiang, D., Zhang, Y., Dubonos, S. V, Grigorieva, I. V, & Firsov, A. A. (2000). Electric Field Effect in Atomically Thin Carbon Films. In Phys. Rev. Lett (Vol. 404). Kluwer. http://science.sciencemag.org/ Nunes, J. M. G., Kautzmann, R. M., & Oliveira, C. (2014). Evaluation of the natural fertilizing potential of basalt dust wastes from the mining district of Nova Prata (Brazil). Journal of Cleaner Production, 84, 649–656. https://doi.org/10.1016/j.jclepro.2014.04.032 Nuthong, W., Uawongsuwan, P., Pivsa-Art, W., & Hamada, H. (2013). Impact property of flexible epoxy treated natural fiber reinforced PLA composites. Energy Procedia, 34, 839–847. https://doi.org/10.1016/j.egypro.2013.06.820 Okamotoa, H., Ishikawa, E., & Suzukig, Y. (1982). Structural Analysis of Sericin Genes HOMOLOGIES WITH FIBROIN GENE IN THE 5’ FLANKING NUCLEOTIDE SEQUENCES*. In THE JOURNAL OF BIOLOGICAL CHEMISTRY Printed in U.S.A (Vol. 257, Issue 24). 89 Oksman, K., Skrifvars, M., & Selin, J. F. (2003). Natural fibres as reinforcement in polylactic acid (PLA) composites. Composites Science and Technology, 63(9), 1317–1324. https://doi.org/10.1016/S0266-3538(03)00103-9 Pan, H., Wang, X., Jia, S., Lu, Z., Bian, J., Yang, H., Han, L., & Zhang, H. (2021). Fiber induced crystallization in polymer composites: A comparative study on poly(lactic acid) composites filled with basalt fiber and fiber powder. International Journal of Biological Macromolecules, 183, 45–54. https://doi.org/10.1016/j.ijbiomac.2021.04.104 Papageorgiou, D. G., Kinloch, I. A., & Young, R. J. (2017). Mechanical properties of graphene and graphene-based nanocomposites. In Progress in Materials Science (Vol. 90, pp. 75–127). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2017.07.004 Parlin, A. F., Stratton, S. M., Culley, T. M., & Guerra, P. A. (2020). A laboratory-based study examining the properties of silk fabric to evaluate its potential as a protective barrier for personal protective equipment and as a functional material for face coverings during the COVID-19 pandemic. PLoS ONE, 15(9 September). https://doi.org/10.1371/journal.pone.0239531 Pé Rez-Rigueiro, J., Viney, C., Llorca, J., & Elices, M. (1998). Silkworm Silk as an Engineering Material. In J Appl Polym Sci (Vol. 70). Pé Rez-Rigueiro, J., Viney, C., Llorca, J., & Elices, M. (2000). Mechanical Properties of Single-Brin Silkworm Silk. In J Appl Polym Sci (Vol. 75). Perrin, H., Vaudemont, R., Del Frari, D., Verge, P., Puchot, L., & Bodaghi, M. (2024). On the cyclic delamination-healing capacity of vitrimer-based composite laminates. Composites Part A: Applied Science and Manufacturing, 177, 107899. https://doi.org/10.1016/j.compositesa.2023.107899 Phiri, J., Gane, P., & Maloney, T. C. (2017). General overview of graphene: Production, properties and application in polymer composites. In Materials Science and Engineering: B (Vol. 215, pp. 9–28). Elsevier Ltd. https://doi.org/10.1016/j.mseb.2016.10.004 Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016a). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied 90 Science and Manufacturing, 83, 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038 Pickering, K. L., Efendy, M. G. A., & Le, T. M. (2016b). A review of recent developments in natural fibre composites and their mechanical performance. Composites Part A: Applied Science and Manufacturing, 83, 98–112. https://doi.org/10.1016/j.compositesa.2015.08.038 Pinto, F., Boccarusso, L., De Fazio, D., Cuomo, S., Durante, M., & Meo, M. (2020). Carbon/hemp bio-hybrid composites: Effects of the stacking sequence on flexural, damping and impact properties. Composite Structures, 242. https://doi.org/10.1016/j.compstruct.2020.112148 Prashantha, K., & Roger, F. (2017). Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling. Journal of Macromolecular Science, Part A: Pure and Applied Chemistry, 54(1), 24–29. https://doi.org/10.1080/10601325.2017.1250311 Rahman, R., & Putra, S. Z. F. S. (2018). Tensile properties of natural and synthetic fiber reinforced polymer composites. In Mechanical and Physical Testing of Biocomposites, Fibre-Reinforced Composites and Hybrid Composites (pp. 81–102). Elsevier. https://doi.org/10.1016/B978-0-08-102292-4.00005-9 Rajak, D. K., Pagar, D. D., Menezes, P. L., & Linul, E. (2019). Fiber-reinforced polymer composites: Manufacturing, properties, and applications. In Polymers (Vol. 11, Issue 10). MDPI AG. https://doi.org/10.3390/polym11101667 Rajak, D., Pagar, D., Menezes, P., & Linul, E. (2019). Fiber-Reinforced Polymer Composites: Manufacturing, Properties, and Applications. Polymers, 11(10), 1667. https://doi.org/10.3390/polym11101667 Rajeshkumar, G., Arvindh Seshadri, S., Devnani, G. L., Sanjay, M. R., Siengchin, S., Prakash Maran, J., Al-Dhabi, N. A., Karuppiah, P., Mariadhas, V. A., Sivarajasekar, N., & Ronaldo Anuf, A. (2021). Environment friendly, renewable and sustainable poly lactic acid (PLA) based natural fiber reinforced composites – A comprehensive review. In Journal of Cleaner Production (Vol. 310). Elsevier Ltd. https://doi.org/10.1016/j.jclepro.2021.127483 91 Ralegaonkar, R., Gavali, H., Aswath, P., & Abolmaali, S. (2018). Application of chopped basalt fibers in reinforced mortar: A review. Construction and Building Materials, 164, 589–602. https://doi.org/10.1016/j.conbuildmat.2017.12.245 Ramamoorthy, S. K., Skrifvars, M., & Persson, A. (2015). A review of natural fibers used in biocomposites: Plant, animal and regenerated cellulose fibers. In Polymer Reviews (Vol. 55, Issue 1, pp. 107–162). Taylor and Francis Inc. https://doi.org/10.1080/15583724.2014.971124 Ranjan, R., & Bajpai, V. (2021). Graphene-based metal matrix nanocomposites: Recent development and challenges. Journal of Composite Materials, 55(17), 2369–2413. https://doi.org/10.1177/0021998320988566 Reverte, J. M., Caminero, M. ángel, Chacón, J. M., García-Plaza, E., Núñez, P. J., & Becar, J. P. (2020). Mechanical and geometric performance of PLA-based polymer composites processed by the fused filament fabrication additive manufacturing technique. Materials, 13(8). https://doi.org/10.3390/MA13081924 Romanov, V. S., Lomov, S. V., Verpoest, I., & Gorbatikh, L. (2015). Stress magnification due to carbon nanotube agglomeration in composites. Composite Structures, 133, 246–256. https://doi.org/10.1016/j.compstruct.2015.07.069 Sang, L., Han, S., Li, Z., Yang, X., & Hou, W. (2019). Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications. Composites Part B: Engineering, 164, 629–639. https://doi.org/10.1016/j.compositesb.2019.01.085 Sang, M., Shin, J., Kim, K., & Yu, K. (2019). Electronic and Thermal Properties of Graphene and Recent Advances in Graphene Based Electronics Applications. Nanomaterials, 9(3), 374. https://doi.org/10.3390/nano9030374 Sarikaya, S., Henry, T. C., & Naraghi, M. (2020). Graphene Size and Morphology: Peculiar Effects on Damping Properties of Polymer Nanocomposites. Experimental Mechanics, 60(6), 753–762. https://doi.org/10.1007/s11340-020-00592-7 Sathish, S., Karthi, N., Prabhu, L., Gokulkumar, S., Balaji, D., Vigneshkumar, N., Ajeem Farhan, T. S., Akilkumar, A., & Dinesh, V. P. (2021). A review of natural fiber 92 composites: Extraction methods, chemical treatments and applications. Materials Today: Proceedings, 45, 8017–8023. https://doi.org/10.1016/j.matpr.2020.12.1105 Schmidt, T., Puchalla, N., Schendzielorz, M., & Kramell, A. E. (2023). Degumming and characterization of Bombyx mori and non-mulberry silks from Saturniidae silkworms. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-46474-5 Sfarra, S., Ibarra-Castanedo, C., Santulli, C., Paoletti, A., Paoletti, D., Sarasini, F., Bendada, A., & Maldague, X. (2013). Falling weight impacted glass and basalt fibre woven composites inspected using non-destructive techniques. Composites Part B: Engineering, 45(1), 601–608. https://doi.org/10.1016/j.compositesb.2012.09.078 Shaffer, G. D. (n.d.). An Archaeomagnetic Study of a Wattle and Daub Building Collapse. Shih, Y. F., & Huang, C. C. (2011). Polylactic acid (PLA)/banana fiber (BF) biodegradable green composites. Journal of Polymer Research, 18(6), 2335–2340. https://doi.org/10.1007/s10965-011-9646-y SHOJI OBUCHI AND SHINJI OGAWA. (n.d.). Shrivastava, R., Singh, K. K., & Modi, V. (2019). ScienceDirect Effect of Stacking Sequence on Interlaminar Shear Strength of Multidirectional GFRP Laminates. www.sciencedirect.com Singhvi, M. S., Zinjarde, S. S., & Gokhale, D. V. (2019). Polylactic acid: synthesis and biomedical applications. Journal of Applied Microbiology, 127(6), 1612–1626. https://doi.org/10.1111/jam.14290 Soldano, C., Mahmood, A., & Dujardin, E. (2010). Production, properties and potential of graphene. In Carbon (Vol. 48, Issue 8, pp. 2127–2150). https://doi.org/10.1016/j.carbon.2010.01.058 Spiridon, I., Darie, R. N., & Kangas, H. (2016). Influence of fiber modifications on PLA/fiber composites. Behavior to accelerated weathering. Composites Part B: Engineering, 92, 19–27. https://doi.org/10.1016/j.compositesb.2016.02.032 Stergiou, A., Cantón-Vitoria, R., Psarrou, M. N., Economopoulos, S. P., & Tagmatarchis, N. (2020). Functionalized graphene and targeted applications – Highlighting the road from chemistry to applications. In Progress in Materials Science (Vol. 114). Elsevier Ltd. https://doi.org/10.1016/j.pmatsci.2020.100683 93 Tábi, T., Égerházi, A. Z., Tamás, P., Czigány, T., & Kovács, J. G. (2014). Investigation of injection moulded poly(lactic acid) reinforced with long basalt fibres. Composites Part A: Applied Science and Manufacturing, 64, 99–106. https://doi.org/10.1016/j.compositesa.2014.05.001 Tabi, T., Tamas, P., & Kovacs, J. G. (2013). Chopped basalt fibres: A new perspective in reinforcing poly(lactic acid) to produce injection moulded engineering composites from renewable and natural resources. Express Polymer Letters, 7(2), 107–119. https://doi.org/10.3144/expresspolymlett.2013.11 Tong, X. Z., Song, F., Li, M. Q., Wang, X. L., Chin, I. J., & Wang, Y. Z. (2013). Fabrication of graphene/polylactide nanocomposites with improved properties. Composites Science and Technology, 88, 33–38. https://doi.org/10.1016/j.compscitech.2013.08.028 Valapa, R. B., Pugazhenthi, G., & Katiyar, V. (2015). Effect of graphene content on the properties of poly(lactic acid) nanocomposites. RSC Advances, 5(36), 28410–28423. https://doi.org/10.1039/c4ra15669b Vinyas, M., Loja, A., & Reddy, K. R. (Eds.). (2020). Advances in Structures, Systems and Materials. Springer Singapore. https://doi.org/10.1007/978-981-15-3254-2 Wang, F., Guo, C., Yang, Q., Li, C., Zhao, P., Xia, Q., & Kaplan, D. L. (2021). Protein composites from silkworm cocoons as versatile biomaterials. Acta Biomaterialia, 121, 180–192. https://doi.org/10.1016/j.actbio.2020.11.037 Wang, J., Jin, X., Li, C., Wang, W., Wu, H., & Guo, S. (2019). Graphene and graphene derivatives toughening polymers: Toward high toughness and strength. In Chemical Engineering Journal (Vol. 370, pp. 831–854). Elsevier B.V. https://doi.org/10.1016/j.cej.2019.03.229 Wang, L., Ma, W., Gross, R. A., & Mccarthy, S. P. (1998). Reactive compatibilization of biodegradable blends of poly(lactic acid) and poly( waprolactone). In Polymer Degradation and Stability (Vol. 59). Wang Mingchao, Zhang Zuoguang, Li Yubin, Li Min, & Sun Zhijie. (2008a). Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. Journal of Reinforced Plastics and Composites, 27(4), 393–407. https://doi.org/10.1177/0731684407084119 94 Wang Mingchao, Zhang Zuoguang, Li Yubin, Li Min, & Sun Zhijie. (2008b). Chemical Durability and Mechanical Properties of Alkali-proof Basalt Fiber and its Reinforced Epoxy Composites. Journal of Reinforced Plastics and Composites, 27(4), 393–407. https://doi.org/10.1177/0731684407084119 Wang, S., Liu, Y., Wang, X., Xiang, H., Kong, D., Wei, N., Guo, W., & Sun, H. (2023). Effects of concentration-dependent graphene on maize seedling development and soil nutrients. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-29725-3 Wei, B., Cao, H., & Song, S. (2010). Tensile behavior contrast of basalt and glass fibers after chemical treatment. Materials & Design, 31(9), 4244–4250. https://doi.org/10.1016/j.matdes.2010.04.009 Wei, X., Li, D., Jiang, W., Gu, Z., Wang, X., Zhang, Z., & Sun, Z. (2015). 3D Printable Graphene Composite. Scientific Reports, 5. https://doi.org/10.1038/srep11181 Wisnom, M. R. (2012). The role of delamination in failure of fibre-reinforced composites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 370(1965), 1850–1870. https://doi.org/10.1098/rsta.2011.0441 Wu, R., Ma, L., & Liu, X. Y. (2022). From Mesoscopic Functionalization of Silk Fibroin to Smart Fiber Devices for Textile Electronics and Photonics. In Advanced Science (Vol. 9, Issue 4). John Wiley and Sons Inc. https://doi.org/10.1002/advs.202103981 Xia, X., Shi, X., Liu, W., Zhao, H., Li, H., & Zhang, Y. (2017). Effect of flax fiber content on polylactic acid (PLA) crystallization in PLA/flax fiber composites. Iranian Polymer Journal (English Edition), 26(9), 693–702. https://doi.org/10.1007/s13726-017-0554-9 Zeng, Q., Du, Z., Qin, C., Wang, Y., Liu, C., & Shen, C. (2020). Enhanced thermal, mechanical and electromagnetic interference shielding properties of graphene nanoplatelets-reinforced poly(lactic acid)/poly(ethylene oxide) nanocomposites. Materials Today Communications, 25. https://doi.org/10.1016/j.mtcomm.2020.101632 Zhang, C., Lv, W., Xie, X., Tang, D., Liu, C., & Yang, Q. H. (2013). Towards low temperature thermal exfoliation of graphite oxide for graphene production. In Carbon (Vol. 62, pp. 11–24). https://doi.org/10.1016/j.carbon.2013.05.033 Zhang, Y., Yu, C., Chu, P. K., Lv, F., Zhang, C., Ji, J., Zhang, R., & Wang, H. (2012). Mechanical and thermal properties of basalt fiber reinforced poly(butylene succinate) 95 composites. Materials Chemistry and Physics, 133(2–3), 845–849. https://doi.org/10.1016/j.matchemphys.2012.01.105 Zhao, H. P., Feng, X. Q., & Shi, H. J. (2007). Variability in mechanical properties of Bombyx mori silk. Materials Science and Engineering C, 27(4), 675–683. https://doi.org/10.1016/j.msec.2006.06.031 Zhao, H. P., Feng, X. Q., Yu, S. W., Cui, W. Z., & Zou, F. Z. (2005). Mechanical properties of silkworm cocoons. Polymer, 46(21), 9192–9201. https://doi.org/10.1016/j.polymer.2005.07.004 Zhao, X., Wang, X., Wu, Z., & Zhu, Z. (2016). Fatigue behavior and failure mechanism of basalt FRP composites under long-term cyclic loads. International Journal of Fatigue, 88, 58–67. https://doi.org/10.1016/j.ijfatigue.2016.03.004 Zhen, Z., & Zhu, H. (2017). Structure and properties of graphene. In Graphene: Fabrication, Characterizations, Properties and Applications (pp. 1–12). Elsevier. https://doi.org/10.1016/B978-0-12-812651-6.00001-X |
en_US |