Thermal Analysis of Double Effect Absorption System Cascaded with Ejector and Enhanced Vapor Compression Refrigeration Cycle

Show simple item record

dc.contributor.author Siddique, Sefat Mahmud
dc.contributor.author Uzzaman, Md. Muhtasim
dc.date.accessioned 2025-02-25T09:02:01Z
dc.date.available 2025-02-25T09:02:01Z
dc.date.issued 2024-07-04
dc.identifier.citation [1] X. Sun et al., “Multi-objective optimization and thermo-economic analysis of an enhanced compression-absorption cascade refrigeration system and ORC integrated system for cooling and power cogeneration,” Energy Convers Manag, vol. 236, May 2021, doi: 10.1016/j.enconman.2021.114068. [2] A. Mota-Babiloni et al., “Ultralow-temperature refrigeration systems: Configurations and refrigerants to reduce the environmental impact,” International Journal of Refrigeration, vol. 111. Elsevier Ltd, pp. 147–158, Mar. 01, 2020. doi: 10.1016/j.ijrefrig.2019.11.016. [3] A. Gupta, Y. Anand, S. K. Tyagi, and S. Anand, “Economic and thermodynamic study of different cooling options: A review,” Renewable and Sustainable Energy Reviews, vol. 62. Elsevier Ltd, pp. 164–194, 2016. doi: 10.1016/j.rser.2016.04.035. [4] A. Mota-Babiloni, J. Navarro-Esbrí, Á. Barragán-Cervera, F. Molés, B. Peris, and G. Verdú, “Commercial refrigeration - An overview of current status,” International Journal of Refrigeration, vol. 57. Elsevier Ltd, pp. 186–196, Jul. 16, 2015. doi: 10.1016/j.ijrefrig.2015.04.013. [5] J. Zhang, H. Meerman, R. Benders, and A. Faaij, “Comprehensive review of current natural gas liquefaction processes on technical and economic performance,” Applied Thermal Engineering, vol. 166. Elsevier Ltd, Feb. 05, 2020. doi: 10.1016/j.applthermaleng.2019.114736. [6] X. She et al., “Energy-efficient and -economic technologies for air conditioning with vapor compression refrigeration: A comprehensive review,” Applied Energy, vol. 232. Elsevier Ltd, pp. 157–186, Dec. 15, 2018. doi: 10.1016/j.apenergy.2018.09.067. [7] C. Park, H. Lee, Y. Hwang, and R. Radermacher, “Recent advances in vapor compression cycle technologies,” International Journal of Refrigeration, vol. 60. Elsevier Ltd, pp. 118–134, Dec. 01, 2015. doi: 10.1016/j.ijrefrig.2015.08.005. [8] K. A. AIKINS, S.-H. LEE, and J. M. CHOI, “TECHNOLOGY REVIEW OF TWO STAGE VAPOR COMPRESSION HEAT PUMP SYSTEM,” International Journal of Air Conditioning and Refrigeration, vol. 21, no. 03, p. 1330002, Sep. 2013, doi: 10.1142/S2010132513300024. [9] Z. Sun and Y. Wang, “Comprehensive performance analysis of cascade refrigeration system with two-stage compression for industrial refrigeration,” Case Studies in Thermal Engineering, vol. 39, Nov. 2022, doi: 10.1016/j.csite.2022.102400. [10] V. Jain, S. S. Kachhwaha, and G. Sachdeva, “Thermodynamic performance analysis of a vapor compression-absorption cascaded refrigeration system,” Energy Convers Manag, vol. 75, pp. 685–700, 2013, doi: 10.1016/j.enconman.2013.08.024. [11] S. Garimella, A. M. Brown, and A. K. Nagavarapu, “Waste heat driven absorption/vapor-compression cascade refrigeration system for megawatt scale, high-flux, low-temperature cooling,” International Journal of Refrigeration, vol. 34, no. 8, pp. 1776– 1785, Dec. 2011, doi: 10.1016/j.ijrefrig.2011.05.017. 84 [12] K. Sumeru, H. Nasution, and F. N. Ani, “A review on two-phase ejector as an expansion device in vapor compression refrigeration cycle,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7. pp. 4927–4937, Sep. 2012. doi: 10.1016/j.rser.2012.04.058. [13] R. Sirwan, M. A. Alghoul, K. Sopian, Y. Ali, and J. Abdulateef, “Evaluation of adding flash tank to solar combined ejector–absorption refrigeration system,” Solar Energy, vol. 91, pp. 283–296, May 2013, doi: 10.1016/j.solener.2013.01.018. [14] K. Megdouli, B. M. Tashtoush, E. Nahdi, M. Elakhdar, A. Mhimid, and L. Kairouani, “Performance analysis of a combined vapor compression cycle and ejector cycle for refrigeration cogeneration,” International Journal of Refrigeration, vol. 74, pp. 517–527, Feb. 2017, doi: 10.1016/j.ijrefrig.2016.12.003. [15] S. Sanaye, M. Emadi, and A. Refahi, “Thermal and economic modeling and optimization of a novel combined ejector refrigeration cycle,” International Journal of Refrigeration, vol. 98, pp. 480–493, Feb. 2019, doi: 10.1016/j.ijrefrig.2018.11.007. [16] J. Navarro-Esbrí, F. Molés, and Á. Barragán-Cervera, “Experimental analysis of the internal heat exchanger influence on a vapour compression system performance working with R1234yf as a drop-in replacement for R134a,” Appl Therm Eng, vol. 59, no. 1–2, pp. 153–161, 2013, doi: 10.1016/j.applthermaleng.2013.05.028. [17] R. Ahmed Mahmood, “Case study of liquid suction heat exchanger in a mechanical refrigeration system using alternative refrigerants.” [Online]. Available: www.sciencepubco.com/index.php/IJET [18] F. M. Tello-Oquendo, E. Navarro-Peris, and J. Gonzálvez-Maciá, “A comprehensive study of two-stage vapor compression cycles with vapor-injection for heating applications, taking into account heat sink of finite capacity,” International Journal of Refrigeration, vol. 93, pp. 52–64, Sep. 2018, doi: 10.1016/j.ijrefrig.2018.05.039. [19] J. Wang, D. Qv, Y. Yao, and L. Ni, “The difference between vapor injection cycle with flash tank and intermediate heat exchanger for air source heat pump: An experimental and theoretical study,” Energy, vol. 221, Apr. 2021, doi: 10.1016/j.energy.2021.119796. [20] F. Wang, D. Y. Li, and Y. Zhou, “Analysis for the ejector used as expansion valve in vapor compression refrigeration cycle,” Appl Therm Eng, vol. 96, pp. 576–582, Mar. 2016, doi: 10.1016/j.applthermaleng.2015.11.095. [21] X. Cao, X. Liang, L. Shao, and C. Zhang, “Performance analysis of an ejector-assisted two-stage evaporation single-stage vapor-compression cycle,” Appl Therm Eng, vol. 205, p. 118005, Mar. 2022, doi: 10.1016/j.applthermaleng.2021.118005. [22] R. Shi, T. Bai, and J. Wan, “Performance analysis of a dual-ejector enhanced two-stage auto-cascade refrigeration cycle for ultra-low temperature refrigeration,” Appl Therm Eng, vol. 240, p. 122152, Mar. 2024, doi: 10.1016/j.applthermaleng.2023.122152. [23] T. Bai, G. Yan, and J. Yu, “Thermodynamic analyses on an ejector enhanced CO2 transcritical heat pump cycle with vapor-injection,” International Journal of Refrigeration, vol. 58, pp. 22–34, Oct. 2015, doi: 10.1016/j.ijrefrig.2015.04.010. 85 [24] M. Walid Faruque, Y. Khan, M. Hafiz Nabil, M. Monjurul Ehsan, and A. Karim, “Thermal Performance Evaluation of a Novel Ejector-Injection Cascade Refrigeration System,” Thermal Science and Engineering Progress, vol. 39, Mar. 2023, doi: 10.1016/j.tsep.2023.101745. [25] S. Jing, Q. Chen, and J. Yu, “Analysis of an ejector-assisted flash tank vapor injection heat pump cycle with dual evaporators for dryer application,” Energy, vol. 286, p. 129531, Jan. 2024, doi: 10.1016/j.energy.2023.129531. [26] V. Boopathi Raja and V. Shanmugam, “A review and new approach to minimize the cost of solar assisted absorption cooling system,” Renewable and Sustainable Energy Reviews, vol. 16, no. 9. pp. 6725–6731, Dec. 2012. doi: 10.1016/j.rser.2012.08.004. [27] C. Amaris, M. Vallès, and M. Bourouis, “Vapour absorption enhancement using passive techniques for absorption cooling/heating technologies: A review,” Applied Energy, vol. 231. Elsevier Ltd, pp. 826–853, Dec. 01, 2018. doi: 10.1016/j.apenergy.2018.09.071. [28] L. Garousi Farshi, S. M. Seyed Mahmoudi, and M. A. Rosen, “Analysis of crystallization risk in double effect absorption refrigeration systems,” Appl Therm Eng, vol. 31, no. 10, pp. 1712–1717, Jul. 2011, doi: 10.1016/j.applthermaleng.2011.02.013. [29] K. Wang, O. Abdelaziz, P. Kisari, and E. A. Vineyard, “State-of-the-art review on crystallization control technologies for water/LiBr absorption heat pumps,” in International Journal of Refrigeration, Sep. 2011, pp. 1325–1337. doi: 10.1016/j.ijrefrig.2011.04.006. [30] R. Nikbakhti, X. Wang, A. K. Hussein, and A. Iranmanesh, “Absorption cooling systems – Review of various techniques for energy performance enhancement,” Alexandria Engineering Journal, vol. 59, no. 2. Elsevier B.V., pp. 707–738, Mar. 01, 2020. doi: 10.1016/j.aej.2020.01.036. [31] M. Chahartaghi, H. Golmohammadi, and A. F. Shojaei, “Performance analysis and optimization of new double effect lithium bromide–water absorption chiller with series and parallel flows,” International Journal of Refrigeration, vol. 97, pp. 73–87, Jan. 2019, doi: 10.1016/j.ijrefrig.2018.08.011. [32] A. Verma, S. C. Kaushik, and S. K. Tyagi, “Performance enhancement of absorption refrigeration systems: An overview,” Journal of Thermal Engineering, vol. 9, no. 4, pp. 1100– 1113, 2023, doi: 10.18186/thermal.1334225. [33] P. S. Arshi Banu and N. M. Sudharsan, “Review of water based vapour absorption cooling systems using thermodynamic analysis,” Renewable and Sustainable Energy Reviews, vol. 82. Elsevier Ltd, pp. 3750–3761, Feb. 01, 2018. doi: 10.1016/j.rser.2017.10.092. [34] G. P. Xu and Y. Q. Dait, “THEORETICAL ANALYSIS AND OPTIMIZATION OF A DOUBLE-EFFECT PARALLEL-FLOW-TYPE ABSORPTION CHILLER,” 1996. [35] R. Ventas, A. Lecuona, A. Zacarías, and M. Venegas, “Ammonia-lithium nitrate absorption chiller with an integrated low-pressure compression booster cycle for low driving temperatures,” Appl Therm Eng, vol. 30, no. 11–12, pp. 1351–1359, Aug. 2010, doi: 10.1016/j.applthermaleng.2010.02.022. 86 [36] D. S. Ayou, J. C. Bruno, and A. Coronas, “Integration of a mechanical and thermal compressor booster in combined absorption power and refrigeration cycles,” Energy, vol. 135, pp. 327–341, 2017, doi: 10.1016/j.energy.2017.06.148. [37] L. Garousi Farshi, A. H. Mosaffa, C. A. Infante Ferreira, and M. A. Rosen, “Thermodynamic analysis and comparison of combined ejector-absorption and single effect absorption refrigeration systems,” Appl Energy, vol. 133, pp. 335–346, Nov. 2014, doi: 10.1016/j.apenergy.2014.07.102. [38] A. Khaliq, R. Kumar, and E. M. A. Mokheimer, “Investigation on a solar thermal power and ejector-absorption refrigeration system based on first and second law analyses,” Energy, vol. 164, pp. 1030–1043, Dec. 2018, doi: 10.1016/j.energy.2018.09.049. [39] R. Gomri, “Second law comparison of single effect and double effect vapour absorption refrigeration systems,” Energy Convers Manag, vol. 50, no. 5, pp. 1279–1287, May 2009, doi: 10.1016/j.enconman.2009.01.019. [40] O. Kaynakli, K. Saka, and F. Kaynakli, “Energy and exergy analysis of a double effect absorption refrigeration system based on different heat sources,” Energy Convers Manag, vol. 106, pp. 21–30, Dec. 2015, doi: 10.1016/j.enconman.2015.09.010. [41] L. A. Domínguez-Inzunza, J. A. Hernández-Magallanes, M. Sandoval-Reyes, and W. Rivera, “Comparison of the performance of single-effect, half-effect, double-effect in series and inverse and triple-effect absorption cooling systems operating with the NH3-LiNO3 mixture,” Appl Therm Eng, vol. 66, no. 1–2, pp. 612–620, 2014, doi: 10.1016/j.applthermaleng.2014.02.061. [42] J. M. Asensio-Delgado, S. Asensio-Delgado, G. Zarca, and A. Urtiaga, “Analysis of hybrid compression absorption refrigeration using low-GWP HFC or HFO/ionic liquid working pairs,” International Journal of Refrigeration, vol. 134, pp. 232–241, Feb. 2022, doi: 10.1016/j.ijrefrig.2021.11.013. [43] L. Kairouani and E. Nehdi, “Cooling performance and energy saving of a compression absorption refrigeration system assisted by geothermal energy,” Appl Therm Eng, vol. 26, no. 2–3, pp. 288–294, Feb. 2006, doi: 10.1016/j.applthermaleng.2005.05.001. [44] C. Cimsit and I. T. Ozturk, “Analysis of compression-absorption cascade refrigeration cycles,” Appl Therm Eng, vol. 40, pp. 311–317, Jul. 2012, doi: 10.1016/j.applthermaleng.2012.02.035. [45] M. Yu, P. Cui, Y. Wang, Z. Liu, Z. Zhu, and S. Yang, “Advanced Exergy and Exergoeconomic Analysis of Cascade Absorption Refrigeration System Driven by Low-Grade Waste Heat,” ACS Sustain Chem Eng, vol. 7, no. 19, pp. 16843–16857, Oct. 2019, doi: 10.1021/acssuschemeng.9b04396. [46] J. Fernández-Seara, J. Sieres, and M. Vázquez, “Compression-absorption cascade refrigeration system,” Appl Therm Eng, vol. 26, no. 5–6, pp. 502–512, Apr. 2006, doi: 10.1016/j.applthermaleng.2005.07.015. [47] J. Sieres and J. Fernández-Seara, “Simulation of compression refrigeration systems,” Computer Applications in Engineering Education, vol. 14, no. 3, pp. 188–197, Oct. 2006, doi: 10.1002/cae.20075. 87 [48] Z. Sun, C. Wang, Y. Liang, H. Sun, S. Liu, and B. Dai, “Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system,” Energy Convers Manag, vol. 204, Jan. 2020, doi: 10.1016/j.enconman.2019.112278. [49] A. Razmi, M. Soltani, and M. Torabi, “Investigation of an efficient and environmentally-friendly CCHP system based on CAES, ORC and compression-absorption refrigeration cycle: Energy and exergy analysis,” Energy Convers Manag, vol. 195, pp. 1199– 1211, Sep. 2019, doi: 10.1016/j.enconman.2019.05.065. [50] M. W. Faruque, Y. Khan, M. H. Nabil, and M. M. Ehsan, “Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater,” Results in Engineering, vol. 17, Mar. 2023, doi: 10.1016/j.rineng.2023.101008. [51] Y. Xu, F. S. Chen, Q. Wang, X. Han, D. Li, and G. Chen, “A novel low-temperature absorption-compression cascade refrigeration system,” Appl Therm Eng, vol. 75, pp. 504–512, Jan. 2015, doi: 10.1016/j.applthermaleng.2014.10.043. [52] J. Sarkar, “Ejector enhanced vapor compression refrigeration and heat pump systems - A review,” Renewable and Sustainable Energy Reviews, vol. 16, no. 9. pp. 6647–6659, Dec. 2012. doi: 10.1016/j.rser.2012.08.007. [53] E. Kurem, I. Horuz, J. P. Hartnett, and W. J. Minkowycz, “A COMPARISON BETWEEN AMMONIA-WATER ANB WATER-LITHIUM BROMIDE SOLUTIONS IN ABSORPTION HEAT TRANSFORMERS,” 2001. [54] C. Cimsit, I. T. Ozturk, and O. Kincay, “Thermoeconomic optimization of LiBr/H2O R134a compression-absorption cascade refrigeration cycle,” Appl Therm Eng, vol. 76, pp. 105– 115, Feb. 2015, doi: 10.1016/j.applthermaleng.2014.10.094. [55] Y. Xu, G. Chen, Q. Wang, X. Han, N. Jiang, and S. Deng, “Performance study on a low-temperature absorption-compression cascade refrigeration system driven by low-grade heat,” Energy Convers Manag, vol. 119, pp. 379–388, Jul. 2016, doi: 10.1016/j.enconman.2016.04.061. [56] Y. Khan, M. W. Faruque, M. H. Nabil, and M. M. Ehsan, “Ejector and Vapor Injection Enhanced Novel Compression-Absorption Cascade Refrigeration Systems: A Thermodynamic Parametric and Refrigerant Analysis,” Energy Convers Manag, vol. 289, Aug. 2023, doi: 10.1016/j.enconman.2023.117190. [57] R. Gomri and R. Hakimi, “Second law analysis of double effect vapour absorption cooler system,” Energy Convers Manag, vol. 49, no. 11, pp. 3343–3348, Nov. 2008, doi: 10.1016/j.enconman.2007.09.033. [58] B. S. Bagheri, R. Shirmohammadi, S. M. S. Mahmoudi, and M. A. Rosen, “Optimization and comprehensive exergy-based analyses of a parallel flow double-effect water-lithium bromide absorption refrigeration system,” Appl Therm Eng, vol. 152, pp. 643– 653, Apr. 2019, doi: 10.1016/j.applthermaleng.2019.02.105. [59] Cengel and Boles, Thermodynamics: An Engineering Approach, 8th ed. 2014. 88 [60] D. Colorado-Garrido, “Advanced Exergy Analysis of a Compression-Absorption Cascade Refrigeration System,” Journal of Energy Resources Technology, Transactions of the ASME, vol. 141, no. 4, Apr. 2019, doi: 10.1115/1.4042003. [61] X. Wang, J. Yu, and M. Xing, “Performance analysis of a new ejector enhanced vapor injection heat pump cycle,” Energy Convers Manag, vol. 100, pp. 242–248, Aug. 2015, doi: 10.1016/j.enconman.2015.05.017. [62] H. Li, F. Cao, X. Bu, L. Wang, and X. Wang, “Performance characteristics of R1234yf ejector-expansion refrigeration cycle,” Appl Energy, vol. 121, pp. 96–103, May 2014, doi: 10.1016/j.apenergy.2014.01.079. [63] S. Elbel and P. Hrnjak, “Experimental validation of a prototype ejector designed to reduce throttling losses encountered in transcritical R744 system operation,” International Journal of Refrigeration, vol. 31, no. 3, pp. 411–422, May 2008, doi: 10.1016/j.ijrefrig.2007.07.013. [64] C. Aktemur, I. T. Ozturk, and C. Cimsit, “Comparative energy and exergy analysis of a subcritical cascade refrigeration system using low global warming potential refrigerants,” Appl Therm Eng, vol. 184, p. 116254, Feb. 2021, doi: 10.1016/j.applthermaleng.2020.116254. [65] Z. Sun, Q. Wang, Z. Xie, S. Liu, D. Su, and Q. Cui, “Energy and exergy analysis of low GWP refrigerants in cascade refrigeration system,” Energy, vol. 170, pp. 1170–1180, Mar. 2019, doi: 10.1016/j.energy.2018.12.055 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2298
dc.description Supervised by Dr. Mohammad Monjurul Ehsan, Professor, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Mechanical Engineering, 2024 en_US
dc.description.abstract The traditional Double Effect Absorption Refrigeration Cycle (DE-ARC) series and parallel configuration cascaded with the conventional Vapor Compression Refrigeration (VCR) technology solves the limitations faced with these standalone respected cycles. Although these systems (Compression Double Effect Absorption Cycle (C-DAC (Series), C-DAC (Parallel))) have difficulties in utilizing high waste heat recovery and consume high compressor power. Regarding these limitations, in our present study, a modified DE-ARC (Series and Parallel) with a Refrigerant Heat Exchanger (RHX) is combined with an improved vapor compression refrigeration (VCR) system that includes an ejector, resulting in the development of the proficient Ejector Double Effect Absorption Cycle. (E-DAC (Series), E-DAC (Parallel)) and Ejector Injection Double Effect Absorption Cycle (EI-DAC (Series), EI-DAC (Parallel)) using LiBr/H2O and R41 as the working fluid. The Engineering Equation Solver (EES) is employed to generate a numerical model for the purpose of conducting a thorough analysis based on the concepts of energy, mass, and exergy conservation, encompassing both the first and second laws of thermodynamics. The results indicate that the four suggested systems outperform the traditional cascaded cycles. Among these four combinations, the EI-DAC (Parallel) configuration shows the highest performance, with an improvement of approximately 16.5% and 14% compared to the C-DAC (Series) and C-DAC (Parallel) configurations, respectively. Further analysis reveals that the coefficient of performance (COP) of our proposed systems exhibits a linear relationship with the evaporator temperature. Furthermore, the systems exhibit improved performance at higher generator temperatures, making them well-suited for utilizing larger quantities of waste heat while still being able to operate at lower evaporator temperatures. Output of this comprehensive theoretical thermodynamic study yield a thorough comprehension of the performance of E-DAC (Series and Parallel) and EI-DAC (Series and Parallel) systems and provide useful suggestions for future enhancement and optimization en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.title Thermal Analysis of Double Effect Absorption System Cascaded with Ejector and Enhanced Vapor Compression Refrigeration Cycle en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics