dc.identifier.citation |
[1] Md Mainuddin Khaled, Md Gias Kamal, Md Kawsar Ahmed Porosh, Dr. Md. Hamidur Rahman (2023), “Experimental Approach to Produce Biogas from Fallen Leaves available in IUT Campus.” Pg 2-35. [2] A. Nsair, S. O. Cinar, A. Alassali, H. A. Qdais, and K. Kuchta, “Operational Parameters of Biogas Plants: A Review and Evaluation Study,” Energies, vol. 13, no. 15, 2020, doi: 10.3390/en13153761. [3] J. N. Meegoda, B. Li, K. Patel, and L. B. Wang, “A review of the processes, parameters, and optimization of anaerobic digestion,” Int. J. Environ. Res. Public Health, vol. 15, no. 10, 2018, doi: 10.3390/ijerph15102224. [4] Y. Vögeli, C. Riu, A. Gallardo, S. Diener, and C. Zurbrügg, Anaerobic Digestion of Biowaste in Developing Countries. 2014. [5] E. Uçkun Kiran, A. P. Trzcinski, W. J. Ng, and Y. Liu, “Bioconversion of food waste to energy: A review,” Fuel, vol. 134, no. June, pp. 389–399, 2014, doi: 10.1016/j.fuel.2014.05.074. 40 [6] H. Ma, Q. Wang, D. Qian, L. Gong, and W. Zhang, “The utilization of acid-tolerant bacteria on ethanol production from kitchen garbage,” Renew. Energy, vol. 34, no. 6, 2009, doi: 10.1016/j.renene.2008.10.020. [7] S. K. Han and H. S. Shin, “Biohydrogen production by anaerobic fermentation of food waste,” Int. J. Hydrogen Energy, vol. 29, no. 6, 2004, doi: 10.1016/j.ijhydene.2003.09.001. [8] K. F. Shariar and H. Al Bustam, “Waste to energy: A new dimension in generating electricity in Bangladesh,” WCSE 2012 - Int. Work. Comput. Sci. Eng., vol. 4, no. 4, pp. 480–483, 2012, doi: 10.7763/ijet.2012.v4.415. [9] A. H. Baky and M. Nazmul, “ES2014-6756 Production of Biogas by Anaerobic Digestion of Food waste and Process Simulation,” pp. 1–7, 2016. [10] N. Curry and P. Pillay, “Biogas prediction and design of a food waste to energy system for the urban environment,” Renew. Energy, vol. 41, pp. 200–209, 2012, doi: 10.1016/j.renene.2011.10.019. [11] E. Ogur and S. Mbatia, “Conversion of Kitchen Waste into Biogas,” Int. J. Eng. Sci., vol. 2, no. 11, pp. 70–76, 2013. [12] H. D. Beyene, A. A. Werkneh, and T. G. Ambaye, “Current updates on waste to energy (WtE) technologies: a review,” Renew. Energy Focus, vol. 24, no. 00, pp. 1–11, 2018, doi: 10.1016/j.ref.2017.11.001. [13] M. S. Rao, S. P. Singh, A. K. Singh, and M. S. Sodha, “Bioenergy conversion studies of the organic fraction of MSW: Assessment of ultimate bioenergy production potential of municipal garbage,” Appl. Energy, vol. 66, no. 1, 2000, doi: 10.1016/S0306-2619(99)00056-2. [14] M. S. Rao and S. P. Singh, “Bioenergy conversion studies of organic fraction of MSW: Kinetic studies and gas yield-organic loading relationships for process optimisation,” 69 Bioresour. Technol., vol. 95, no. 2, 2004, doi: 10.1016/j.biortech.2004.02.013. [15] Q. Wang, X. Wang, X. Wang, H. Ma, and N. Ren, “Bioconversion of kitchen garbage to lactic acid by two wild strains of Lactobacillus species,” in Journal of Environmental Science 41 and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2005, vol. 40, no. 10, doi: 10.1080/10934520500184624. [16] Z. Youcai and Z. Tao, “Anaerobic fermentation process for biohydrogen production from food waste,” in Biohydrogen Production and Hybrid Process Development, 2021. [17] G. W. Norton, “Economic and environmental impacts of IPM,” vol. 8, no. 3, pp. 271–277, 1994. [18] A. Al-Wahaibi et al., “Techno-economic evaluation of biogas production from food waste via anaerobic digestion,” Sci. Rep., vol. 10, no. 1, pp. 1–16, 2020, doi: 10.1038/s41598-020- 72897-5. [19] J. Kuo and J. Dow, “Biogas production from anaerobic digestion of food waste and relevant air quality implications,” J. Air Waste Manag. Assoc., vol. 67, no. 9, pp. 1000–1011, 2017, doi: 10.1080/10962247.2017.1316326. [20] H. S. Shin and J. H. Youn, “Conversion of food waste into hydrogen by thermophilic acidogenesis,” Biodegradation, vol. 16, no. 1, 2005, doi: 10.1007/s10531-004-0377-9. [21] M. Melikoglu, C. S. K. Lin, and C. Webb, “Analysing global food waste problem: Pinpointing the facts and estimating the energy content,” Cent. Eur. J. Eng., vol. 3, no. 2, 2013, doi: 10.2478/s13531-012-0058-5. [22] E. S. Rosas-Mendoza, A. Alvarado-Vallejo, N. A. Vallejo-Cantú, R. Snell-Castro, S. Martínez-Hernández, and A. Alvarado-Lassman, “Batch and semi-continuous anaerobic digestion of industrial solid citruswaste for the production of bioenergy,” Processes, vol. 9, no. 4, pp. 1–16, 2021, doi: 10.3390/pr9040648. [23] M. Islam, B. Salam, and A. Mohajan, “Icme09-Th-19 Generation of Biogas From Anerobic Digestion of Vegetable Waste,” vol. 2009, no. December, pp. 26–28, 2009. [24] A. E. Cioabla, I. Ionel, G. A. Dumitrel, and F. Popescu, “Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues,” Biotechnol. Biofuels, vol. 5, no. ii, pp. 1–9, 2012, doi: 10.1186/1754-6834-5-39. 42 [25] O. N. Medvedeva and S. D. Perevalov, “Mathematical Modeling of the Process of the Gas Generation and Gas Purification of the Biogas on Polygon of Residential Solid Waste,” IOP Conf. Ser. Earth Environ. Sci., vol. 459, no. 3, 2020, doi: 10.1088/1755-1315/459/3/032004. [26] A. S. Chowdhury, S. Saagoto, A. Islam, and S. Hossen, “A Review of Different Working Fluids Used in the Power Sector.” [27] N. Harun, N. A. Othman, N. A. Zaki, N. A. Mat Rasul, R. A. Samah, and H. Hashim, 70 “Simulation of Anaerobic Digestion for Biogas Production from Food Waste Using SuperPro Designer,” Mater. Today Proc., vol. 19, pp. 1315–1320, 2019, doi: 10.1016/j.matpr.2019.11.143. [28] G. A. Gebreslase, F. G. Gebrihet, and M. M. Atsbha, “Process Simulation and Design of Biogas Plant using Food Waste as Feedstock,” Int. J. Innov. Sci. Res. Technol., vol. 3, no. 7, pp. 573–599, 2018. [29] R. Kleerebezem, “Biochemical Conversion: Anaerobic Digestion,” in Biomass as a Sustainable Energy Source for the Future: Fundamentals of Conversion Processes, vol. 9781118304914, 2014. [30] R. Kleerebezem and M. C. van Loosdrecht, “Mixed culture biotechnology for bioenergy production,” Current Opinion in Biotechnology, vol. 18, no. 3. 2007, doi: 10.1016/j.copbio.2007.05.001. [31] K. M. Rahman, L. Melville, D. J. Edwards, D. Fulford, and W. D. Thwala, “Determination of the Potential Impact of Domestic Anaerobic Digester Systems: A Community Based Research Initiative in Rural Bangladesh,” Processes, vol. 7, no. 8, p. 512, 2019, doi: 10.3390/pr7080512. [32] W. K. Biswas, P. Bryce, and M. Diesendorf, “Model for empowering rural poor through renewable energy technologies in Bangladesh,” Environ. Sci. Policy, vol. 4, no. 6, pp. 333–344, 2001, doi: 10.1016/S1462-9011(01)00031-4. [33] S. A. Iqbal, S. Rahaman, and A. Yousuf, “Present scenario of biogas technology in Bangladesh-prospects, potentials and barriers,” Proc. 15th Annu. Pap. meet, vol. 7, no. March 2015, p. 8, 2014. 43 [34] O. Alam and X. Qiao, “An in-depth review on municipal solid waste management, treatment and disposal in Bangladesh,” Sustain. Cities Soc., vol. 52, p. 101775, Jan. 2020, doi: 10.1016/J.SCS.2019.101775. [35] M. Obrecht, “BIOGAS — SUSTAINABLE ENERGY SOURCE : NEW POSSIBILITIES AND MEASURES FOR SLOVENIA BIOPLIN — TRAJNOSTNI VIR ENERGIJE :,” no. January 2018, 2011. [36] A. H. Baky, M. N. H. Khan, F. Kader, and H. A. Chowdhury, “Production of biogas by anaerobic digestion of food waste and process simulation,” ASME 2014 8th Int. Conf. Energy Sustain. ES 2014 Collocated with ASME 2014 12th Int. Conf. Fuel Cell Sci. Eng. Technol., vol. 2, no. 3, pp. 79–83, 2014, doi: 10.1115/ES2014-6756. [37] “Commercial Biogas Seminar in Bangladesh.” . [38] S. J. Ojolo, R. R. Dinrifo, and K. B. Adesuyi, “Comparative Study of Biogas Production from Five Substrates,” Adv. Mater. Res., vol. 18–19, pp. 519–525, 2007, doi: 10.4028/www.scientific.net/amr.18-19.519 |
en_US |