| Login
dc.contributor.author | Mahdi, Jawad | |
dc.contributor.author | Jahan, Syoda Anamika | |
dc.contributor.author | Tawassaf, Serniabat Wasit | |
dc.date.accessioned | 2025-02-26T07:02:02Z | |
dc.date.available | 2025-02-26T07:02:02Z | |
dc.date.issued | 2024-06-24 | |
dc.identifier.citation | [1] Y. Yuan, B. Liu, Z. Sha, Z. Zhang, and Z. Wang, “Zero group velocity feature in CFRP Nomex honeycomb structure and its use for debonding detection,” Mech Syst Signal Process, vol. 216, p. 111479, Jul. 2024, doi: 10.1016/j.ymssp.2024.111479. [2] C. Li, N. Ma, Q. Deng, and Q. Han, “Deformation and energy absorption of the laminated reentrant honeycomb structures under static and dynamic loadings,” Mechanics of Advanced Materials and Structures, vol. 31, no. 11, pp. 2472–2482, Jun. 2024, doi: 10.1080/15376494.2022.2158505. [3] D. Mousanezhad, B. Haghpanah, R. Ghosh, A. M. Hamouda, H. Nayeb-Hashemi, and A. Vaziri, “Elastic properties of chiral, anti-chiral, and hierarchical honeycombs: A simple energy-based approach,” Theoretical and Applied Mechanics Letters, vol. 6, no. 2, pp. 81– 96, Mar. 2016, doi: 10.1016/j.taml.2016.02.004. [4] Z. Wang, “Recent advances in novel metallic honeycomb structure,” Compos B Eng, vol. 166, pp. 731–741, Jun. 2019, doi: 10.1016/j.compositesb.2019.02.011. [5] L. J. Hall et al., “Sign Change of Poisson’s Ratio for Carbon Nanotube Sheets,” Science (1979), vol. 320, no. 5875, pp. 504–507, Apr. 2008, doi: 10.1126/science.1149815. [6] W. Hou, X. Yang, W. Zhang, and Y. Xia, “Design of energy-dissipating structure with functionally graded auxetic cellular material,” International Journal of Crashworthiness, vol. 23, no. 4, pp. 366–376, Jul. 2018, doi: 10.1080/13588265.2017.1328764. [7] Y. Gao and H. Huaiwei, “Energy absorption characteristics and optimization of three-beam star honeycomb,” Mechanics of Advanced Materials and Structures, vol. 30, no. 8, pp. 1559–1573, Mar. 2023, doi: 10.1080/15376494.2022.2037171. [8] J. Zhang, G. Lu, and Z. You, “Large deformation and energy absorption of additively manufactured auxetic materials and structures: A review,” Compos B Eng, vol. 201, p. 108340, Nov. 2020, doi: 10.1016/j.compositesb.2020.108340. 63 [9] L. Jiang and H. Hu, “Low-velocity impact response of multilayer orthogonal structural composite with auxetic effect,” Compos Struct, vol. 169, pp. 62–68, Jun. 2017, doi: 10.1016/j.compstruct.2016.10.018. [10] V. S. Vakharia, L. Kuentz, A. Salem, M. C. Halbig, J. A. Salem, and M. Singh, “Additive Manufacturing and Characterization of Metal Particulate Reinforced Polylactic Acid (PLA) Polymer Composites,” Polymers (Basel), vol. 13, no. 20, p. 3545, Oct. 2021, doi: 10.3390/polym13203545. [11] R. Kishore, M. Vinayaga Moorthy, P. S. Gokul, Mugundhan, and Mugilan, “Additive manufacturing with composites of poly lactic acid (PLA),” in Journal of Physics: Conference Series, IOP Publishing Ltd, Sep. 2021. doi: 10.1088/1742-6596/2027/1/012008. [12] P. Chennakesava and Y. S. Narayan, Fused Deposition Modeling-Insights. 2014. [Online]. Available: https://www.researchgate.net/publication/269702639 [13] H. N. G. Wadley, “Multifunctional periodic cellular metals,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 364, no. 1838, pp. 31–68, Jan. 2006, doi: 10.1098/rsta.2005.1697. [14] J. Hohe and W. Becker, “Effective elastic properties of triangular grid structures,” Compos Struct, vol. 45, no. 2, pp. 131–145, Jun. 1999, doi: 10.1016/S0263-8223(99)00016-1. [15] H. Sunami, E. Ito, M. Tanaka, S. Yamamoto, and M. Shimomura, “Effect of honeycomb film on protein adsorption, cell adhesion and proliferation,” Colloids Surf A Physicochem Eng Asp, vol. 284–285, pp. 548–551, Aug. 2006, doi: 10.1016/j.colsurfa.2005.11.041. [16] Q. Zhang et al., “Bioinspired engineering of honeycomb structure – Using nature to inspire human innovation,” Prog Mater Sci, vol. 74, pp. 332–400, Oct. 2015, doi: 10.1016/j.pmatsci.2015.05.001. [17] Reddy Y. Kiran Kumar and Reddy N. Venkatramana, “Design and Analysis of Sandwich Honey Comb Structures,” International Journal of Research in Engineering, Science and Management , 2019. 64 [18] S. N. Abhinav, “A Review Paper on Origin of Honeycomb Structure and its Sailing Properties,” International Journal of Engineering Research and, vol. V9, no. 08, Sep. 2020, doi: 10.17577/IJERTV9IS080336. [19] L. Heng, B. Wang, M. Li, Y. Zhang, and L. Jiang, “Advances in Fabrication Materials of Honeycomb Structure Films by the Breath-Figure Method,” Materials, vol. 6, no. 2, pp. 460–482, Feb. 2013, doi: 10.3390/ma6020460. [20] D. Mousanezhad et al., “Hierarchical honeycomb auxetic metamaterials,” Sci Rep, vol. 5, no. 1, p. 18306, Dec. 2015, doi: 10.1038/srep18306. [21] X. Gong, C. Ren, Y. Liu, J. Sun, and F. Xie, “Impact Response of the Honeycomb Sandwich Structure with Different Poisson’s Ratios,” Materials, vol. 15, no. 19, p. 6982, Oct. 2022, doi: 10.3390/ma15196982. [22] Q. He and D. W. Ma, “Parametric study and multi-objective crashworthiness optimisation of reinforced hexagonal honeycomb under dynamic loadings,” International Journal of Crashworthiness, vol. 20, no. 5, pp. 495–509, Sep. 2015, doi: 10.1080/13588265.2015.1041324. [23] T.-C. Lin, T.-J. Chen, and J.-S. Huang, “In-plane elastic constants and strengths of circular cell honeycombs,” Compos Sci Technol, vol. 72, no. 12, pp. 1380–1386, Jul. 2012, doi: 10.1016/j.compscitech.2012.05.009. [24] L. Qin, S. Yang, G. Li, G. Wang, Z. Chen, and H. Li, “Design and optimization of circular honeycomb lower limb protection device under blast impact,” Journal of Sandwich Structures & Materials, vol. 26, no. 5, pp. 606–627, Jun. 2024, doi: 10.1177/10996362231212555. [25] T.-C. Lin, T.-J. Chen, and J.-S. Huang, “In-plane elastic constants and strengths of circular cell honeycombs,” Compos Sci Technol, vol. 72, no. 12, pp. 1380–1386, Jul. 2012, doi: 10.1016/j.compscitech.2012.05.009. [26] D. W. Overaker, A. M. Cuitin˜o, and N. A. Langrana, “Elastoplastic Micromechanical Modeling of Two-Dimensional Irregular Convex and Nonconvex (Re-entrant) Hexagonal Foams,” J Appl Mech, vol. 65, no. 3, pp. 748–757, Sep. 1998, doi: 10.1115/1.2789119. 65 [27] D. H. Chen and L. Yang, “Analysis of equivalent elastic modulus of asymmetrical honeycomb,” Compos Struct, vol. 93, no. 2, pp. 767–773, Jan. 2011, doi: 10.1016/j.compstruct.2010.07.014. [28] M. Muraoka and S. Sanada, “Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism,” Sens Actuators A Phys, vol. 157, no. 1, pp. 84–90, Jan. 2010, doi: 10.1016/j.sna.2009.10.024. [29] H. Buchberg, O. A. Lalude, and D. K. Edwards, “Performance characteristics of rectangular honeycomb solar-thermal converters,” Solar Energy, vol. 13, no. 2, pp. 193–221, May 1971, doi: 10.1016/0038-092X(71)90003-X. [30] X. Zhang and H. Zhang, “Theoretical and numerical investigation on the crush resistance of rhombic and kagome honeycombs,” Compos Struct, vol. 96, pp. 143–152, Feb. 2013, doi: 10.1016/j.compstruct.2012.09.028. [31] G. C. Saha, A. L. Kalamkarov, and A. V. Georgiades, “Asymptotic homogenization modeling and analysis of effective properties of smart composite reinforced and sandwich shells,” Int J Mech Sci, vol. 49, no. 2, pp. 138–150, Feb. 2007, doi: 10.1016/j.ijmecsci.2006.08.019. [32] A. Alderson et al., “Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading,” Compos Sci Technol, vol. 70, no. 7, pp. 1042–1048, Jul. 2010, doi: 10.1016/j.compscitech.2009.07.009. [33] T. Bitzer, “Honeycomb Marine Applications,” Journal of Reinforced Plastics and Composites, vol. 13, no. 4, pp. 355–360, Apr. 1994, doi: 10.1177/073168449401300406. [34] D. T. Queheillalt, G. Carbajal, G. P. Peterson, and H. N. G. Wadley, “A multifunctional heat pipe sandwich panel structure,” Int J Heat Mass Transf, vol. 51, no. 1–2, pp. 312–326, Jan. 2008, doi: 10.1016/j.ijheatmasstransfer.2007.03.051. [35] S. K. Sahu, N. D. Badgayan, S. Samanta, and P. S. Rama Sreekanth, “Evaluation of Cell Parameter Variation on Energy Absorption Characteristic of Thermoplastic Honeycomb Sandwich Structure,” Arab J Sci Eng, vol. 46, no. 12, pp. 12487–12507, Dec. 2021, doi: 10.1007/s13369-021-05987-9. 66 [36] N. S. Ha, G. Lu, and X. Xiang, “Energy absorption of a bio-inspired honeycomb sandwich panel,” J Mater Sci, vol. 54, no. 8, pp. 6286–6300, Apr. 2019, doi: 10.1007/s10853-018- 3163-x. [37] H. Sun et al., “Review on materials and structures inspired by bamboo,” Constr Build Mater, vol. 325, p. 126656, Mar. 2022, doi: 10.1016/j.conbuildmat.2022.126656. [38] H. Ye et al., “Bio-based composites fabricated from wood fibers through self-bonding technology,” Chemosphere, vol. 287, p. 132436, Jan. 2022, doi: 10.1016/j.chemosphere.2021.132436. [39] I. Burgert, E. Cabane, C. Zollfrank, and L. Berglund, “Bio-inspired functional wood-based materials – hybrids and replicates,” International Materials Reviews, vol. 60, no. 8, pp. 431– 450, Nov. 2015, doi: 10.1179/1743280415Y.0000000009. [40] J. Xiang and J. Du, “Energy absorption characteristics of bio-inspired honeycomb structure under axial impact loading,” Materials Science and Engineering: A, vol. 696, pp. 283–289, Jun. 2017, doi: 10.1016/j.msea.2017.04.044. [41] N. S. Ha, G. Lu, and X. Xiang, “Energy absorption of a bio-inspired honeycomb sandwich panel,” J Mater Sci, vol. 54, no. 8, pp. 6286–6300, Apr. 2019, doi: 10.1007/s10853-018- 3163-x. [42] W. Zhang, S. Yin, T. X. Yu, and J. Xu, “Crushing resistance and energy absorption of pomelo peel inspired hierarchical honeycomb,” Int J Impact Eng, vol. 125, pp. 163–172, Mar. 2019, doi: 10.1016/j.ijimpeng.2018.11.014. [43] Z. Zhang, L. Zhang, B. Song, Y. Yao, and Y. Shi, “Bamboo-inspired, simulation-guided design and 3D printing of light-weight and high-strength mechanical metamaterials,” Appl Mater Today, vol. 26, p. 101268, Mar. 2022, doi: 10.1016/j.apmt.2021.101268. [44] M. Ahmad and F. A. Kamke, “Analysis of Calcutta bamboo for structural composite materials: surface characteristics,” Wood Sci Technol, vol. 37, no. 3–4, pp. 233–240, Dec. 2003, doi: 10.1007/s00226-003-0172-x. 67 [45] Jillian Lambert, “Bamboo - A Solution to the Supply Issue?” Accessed: May 02, 2024. [Online]. Available: www.manobyte.com. https://www.manobyte.com/growth strategy/innovative-building-materials-bamboo-a-solution-to-the-supply-issue [46] Coral Disease & Health Consortium, “Coral Skeleton.” Accessed: May 05, 2024. [Online]. Available: https://cdhc.noaa.gov/coral-biology/coral-skeleton/ [47] R. Nuwer, “Coral Reefs Absorb 97 Percent of the Energy From Waves Headed Toward Shore,” Smithsonian Magazine. Accessed: Jun. 05, 2024. [Online]. Available: https://www.smithsonianmag.com/smart-news/coral-reefs-absorb-almost-all-energy crashing-waves-headed-toward-shore-180951462/ [48] D. Garlotta, “A Literature Review of Poly Lactic Acid,” J Polym Environ, vol. 9, no. 2, pp. 63–84, 2001, doi: 10.1023/A:1020200822435. [49] R. Mehta, V. Kumar, H. Bhunia, and S. N. Upadhyay, “Synthesis of Poly(Lactic Acid): A Review,” Journal of Macromolecular Science, Part C: Polymer Reviews, vol. 45, no. 4, pp. 325–349, Oct. 2005, doi: 10.1080/15321790500304148. [50] NatureWorks Co, “IngeoTM Biopolymer 4043D Technical Data Sheet 3D Printing Monofilament-General Purpose Grade.” [Online]. Available: http://www.fda.gov/food/ingredientspackaginglabeling/ [51] R. Auras, B. Harte, and S. Selke, “An Overview of Polylactides as Packaging Materials,” Macromol Biosci, vol. 4, no. 9, pp. 835–864, Sep. 2004, doi: 10.1002/mabi.200400043. [52] K. Van de Velde and P. Kiekens, “Biopolymers: overview of several properties and consequences on their applications,” Polym Test, vol. 21, no. 4, pp. 433–442, 2002, doi: 10.1016/S0142-9418(01)00107-6. [53] R. E. Drumright, P. R. Gruber, and D. E. Henton, “Polylactic Acid Technology,” Advanced materials 12.23 (2000): 1841-1846., 2000. [54] G. Kale, R. Auras, S. P. Singh, and R. Narayan, “Biodegradability of polylactide bottles in real and simulated composting conditions,” Polym Test, vol. 26, no. 8, pp. 1049–1061, Dec. 2007, doi: 10.1016/j.polymertesting.2007.07.006. 68 [55] T. P. Haider, C. Völker, J. Kramm, K. Landfester, and F. R. Wurm, “Plastics of the Future? The Impact of Biodegradable Polymers on the Environment and on Society,” Angewandte Chemie International Edition, vol. 58, no. 1, pp. 50–62, Jan. 2019, doi: 10.1002/anie.201805766. [56] E. T. H. Vink, K. R. Rábago, D. A. Glassner, and P. R. Gruber, “Applications of life cycle assessment to NatureWorksTM polylactide (PLA) production,” Polym Degrad Stab, vol. 80, no. 3, pp. 403–419, Jan. 2003, doi: 10.1016/S0141-3910(02)00372-5. [57] T. Peng, K. Kellens, R. Tang, C. Chen, and G. Chen, “Sustainability of additive manufacturing: An overview on its energy demand and environmental impact,” Addit Manuf, vol. 21, pp. 694–704, May 2018, doi: 10.1016/j.addma.2018.04.022. [58] C. R. Álvarez-Chávez, S. Edwards, R. Moure-Eraso, and K. Geiser, “Sustainability of bio based plastics: general comparative analysis and recommendations for improvement,” J Clean Prod, vol. 23, no. 1, pp. 47–56, Mar. 2012, doi: 10.1016/j.jclepro.2011.10.003. [59] Li Shen, “Product Overview and Market Projection of Emerging Bio-based Plastics,” Report for European polysaccharide network of excellence (EPNOE) and European bioplastics 243 (2009): 1-245., 2009. [60] O. TUNÇEL, “Optimizing printing parameters for enhanced mechanical properties of 3D printed PLA octet lattice structures,” European Mechanical Science, vol. 7, no. 4, pp. 278– 284, Dec. 2023, doi: 10.26701/ems.1382590. [61] B. A. Ahmed et al., “Printing Parameter Optimization of Additive Manufactured PLA Using Taguchi Design of Experiment,” Polymers (Basel), vol. 15, no. 22, p. 4370, Nov. 2023, doi: 10.3390/polym15224370. [62] R. H. Abdul Haq, O. M. Faizan Marwah, M. N. Abdol Rahman, H. F. Haw, H. Abdullah, and S. Ahmad, “3D Printer parameters analysis for PCL/PLA filament wire using Design of Experiment (DOE),” IOP Conf Ser Mater Sci Eng, vol. 607, no. 1, p. 012001, Aug. 2019, doi: 10.1088/1757-899X/607/1/012001. 69 [63] A. Dadashi and M. Azadi, “Optimization of 3D printing parameters in polylactic acid bio metamaterial under cyclic bending loading considering fracture features,” Heliyon, vol. 10, no. 4, p. e26357, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26357. [64] “Ultimate 3D Printing Material Properties Table.” Accessed: May 29, 2024. [Online]. Available: https://www.simplify3d.com/resources/materials-guide/properties-table/ [65] A. Dadashi and M. Azadi, “Optimization of 3D printing parameters in polylactic acid bio metamaterial under cyclic bending loading considering fracture features,” Heliyon, vol. 10, no. 4, p. e26357, Feb. 2024, doi: 10.1016/j.heliyon.2024.e26357. [66] Crump S. Scott, “United States Patent (19) Crump (54) APPARATUS AND METHOD FOR CREATING THREE-DIMENSIONAL OBJECTS,” 1992 Accessed: Jan. 22, 2024. [Online]. Available: https://patents.google.com/patent/US5121329A/en [67] B. N. Turner, R. Strong, and S. A. Gold, “A review of melt extrusion additive manufacturing processes: I. Process design and modeling,” Rapid Prototyp J, vol. 20, no. 3, pp. 192–204, Apr. 2014, doi: 10.1108/RPJ-01-2013-0012. [68] B. N. Turner and S. A. Gold, “A review of melt extrusion additive manufacturing processes: II. Materials, dimensional accuracy, and surface roughness,” Rapid Prototyp J, vol. 21, no. 3, pp. 250–261, Apr. 2015, doi: 10.1108/RPJ-02-2013-0017. [69] L. J. Kumar and C. G. Krishnadas Nair, “Current Trends of Additive Manufacturing in the Aerospace Industry,” in Advances in 3D Printing & Additive Manufacturing Technologies, Singapore: Springer Singapore, 2017, pp. 39–54. doi: 10.1007/978-981-10-0812-2_4. [70] S. H. Masood and W. Q. Song, “Development of new metal/polymer materials for rapid tooling using Fused deposition modelling,” Mater Des, vol. 25, no. 7, pp. 587–594, Oct. 2004, doi: 10.1016/j.matdes.2004.02.009. [71] A. R. Torrado Perez, D. A. Roberson, and R. B. Wicker, “Fracture Surface Analysis of 3D Printed Tensile Specimens of Novel ABS-Based Materials,” Journal of Failure Analysis and Prevention, vol. 14, no. 3, pp. 343–353, Jun. 2014, doi: 10.1007/s11668-014-9803-9. [72] M. Ivey, G. W. Melenka, Jason. P. Carey, and C. Ayranci, “Characterizing short-fiber reinforced composites produced using additive manufacturing,” Advanced Manufacturing: 70 Polymer & Composites Science, vol. 3, no. 3, pp. 81–91, Jul. 2017, doi: 10.1080/20550340.2017.1341125. [73] P. Geng et al., “Effects of extrusion speed and printing speed on the 3D printing stability of extruded PEEK filament,” J Manuf Process, vol. 37, pp. 266–273, Jan. 2019, doi: 10.1016/j.jmapro.2018.11.023. [74] J. T. Cantrell et al., “Experimental characterization of the mechanical properties of 3D printed ABS and polycarbonate parts,” Rapid Prototyp J, vol. 23, no. 4, pp. 811–824, Jun. 2017, doi: 10.1108/RPJ-03-2016-0042. [75] T. D. Ngo, A. Kashani, G. Imbalzano, K. T. Q. Nguyen, and D. Hui, “Additive manufacturing (3D printing): A review of materials, methods, applications and challenges,” Compos B Eng, vol. 143, pp. 172–196, Jun. 2018, doi: 10.1016/j.compositesb.2018.02.012. [76] AAD SOLUTECH, “Fused Deposition Modeling.” Accessed: Jun. 24, 2024. [Online]. Available: https://aad3d.com/technology/ [77] G. C. Onwubolu and F. Rayegani, “Characterization and Optimization of Mechanical Properties of ABS Parts Manufactured by the Fused Deposition Modelling Process,” International Journal of Manufacturing Engineering, vol. 2014, pp. 1–13, Nov. 2014, doi: 10.1155/2014/598531. [78] K. G. J. Christiyan, U. Chandrasekhar, and K. Venkateswarlu, “A study on the influence of process parameters on the Mechanical Properties of 3D printed ABS composite,” IOP Conf Ser Mater Sci Eng, vol. 114, p. 012109, Feb. 2016, doi: 10.1088/1757-899X/114/1/012109. [79] R. Walter, K. Friedrich, and M. Gurka, “Characterization of mechanical properties of additively manufactured polymers and composites,” 2018, p. 020033. doi: 10.1063/1.5045895. [80] S. Banerjee, S. Burbine, N. Kodihalli Shivaprakash, and J. Mead, “3D-Printable PP/SEBS Thermoplastic Elastomeric Blends: Preparation and Properties,” Polymers (Basel), vol. 11, no. 2, p. 347, Feb. 2019, doi: 10.3390/polym11020347. 71 [81] G. Liao et al., “Properties of oriented carbon fiber/polyamide 12 composite parts fabricated by fused deposition modeling,” Mater Des, vol. 139, pp. 283–292, Feb. 2018, doi: 10.1016/j.matdes.2017.11.027. [82] W. Wu, P. Geng, G. Li, D. Zhao, H. Zhang, and J. Zhao, “Influence of Layer Thickness and Raster Angle on the Mechanical Properties of 3D-Printed PEEK and a Comparative Mechanical Study between PEEK and ABS,” Materials, vol. 8, no. 9, pp. 5834–5846, Sep. 2015, doi: 10.3390/ma8095271. [83] A. W. Gebisa and H. G. Lemu, “Influence of 3D Printing FDM Process Parameters on Tensile Property of ULTEM 9085,” Procedia Manuf, vol. 30, pp. 331–338, 2019, doi: 10.1016/j.promfg.2019.02.047. [84] X. Tian, T. Liu, C. Yang, Q. Wang, and D. Li, “Interface and performance of 3D printed continuous carbon fiber reinforced PLA composites,” Compos Part A Appl Sci Manuf, vol. 88, pp. 198–205, Sep. 2016, doi: 10.1016/j.compositesa.2016.05.032. [85] N. Li, Y. Li, and S. Liu, “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing,” J Mater Process Technol, vol. 238, pp. 218–225, Dec. 2016, doi: 10.1016/j.jmatprotec.2016.07.025. [86] U. Fasel, D. Keidel, L. Baumann, G. Cavolina, M. Eichenhofer, and P. Ermanni, “Composite additive manufacturing of morphing aerospace structures,” Manuf Lett, vol. 23, pp. 85–88, Jan. 2020, doi: 10.1016/j.mfglet.2019.12.004. [87] Z. Hou, X. Tian, J. Zhang, and D. Li, “3D printed continuous fibre reinforced composite corrugated structure,” Compos Struct, vol. 184, pp. 1005–1010, Jan. 2018, doi: 10.1016/j.compstruct.2017.10.080. [88] L. Sang, S. Han, Z. Li, X. Yang, and W. Hou, “Development of short basalt fiber reinforced polylactide composites and their feasible evaluation for 3D printing applications,” Compos B Eng, vol. 164, pp. 629–639, May 2019, doi: 10.1016/j.compositesb.2019.01.085. [89] J. Torres, M. Cole, A. Owji, Z. DeMastry, and A. P. Gordon, “An approach for mechanical property optimization of fused deposition modeling with polylactic acid via design of 72 experiments,” Rapid Prototyp J, vol. 22, no. 2, pp. 387–404, Mar. 2016, doi: 10.1108/RPJ 07-2014-0083. [90] R. T. L. Ferreira, I. C. Amatte, T. A. Dutra, and D. Bürger, “Experimental characterization and micrography of 3D printed PLA and PLA reinforced with short carbon fibers,” Compos B Eng, vol. 124, pp. 88–100, Sep. 2017, doi: 10.1016/j.compositesb.2017.05.013. [91] A. Plymill, R. Minneci, D. A. Greeley, J. Gritton, and D. Greeley, “Graphene and Carbon Nanotube PLA Composite Feedstock Graphene and Carbon Nanotube PLA Composite Feedstock Development for Fused Deposition Modeling Development for Fused Deposition Modeling Graphene and Carbon Nanotube PLA Composite Feedstock Development for Fused Deposition Modeling,” 2016. [Online]. Available: https://trace.tennessee.edu/utk_chanhonoproj/1955 [92] J. Bustillos, D. Montero, P. Nautiyal, A. Loganathan, B. Boesl, and A. Agarwal, “Integration of graphene in poly(lactic) acid by 3D printing to develop creep and wear‐resistant hierarchical nanocomposites,” Polym Compos, vol. 39, no. 11, pp. 3877–3888, Nov. 2018, doi: 10.1002/pc.24422. [93] M. Caminero, J. Chacón, E. García-Plaza, P. Núñez, J. Reverte, and J. Becar, “Additive Manufacturing of PLA-Based Composites Using Fused Filament Fabrication: Effect of Graphene Nanoplatelet Reinforcement on Mechanical Properties, Dimensional Accuracy and Texture,” Polymers (Basel), vol. 11, no. 5, p. 799, May 2019, doi: 10.3390/polym11050799. [94] C. B. Sweeney et al., “Welding of 3D-printed carbon nanotube–polymer composites by locally induced microwave heating,” Sci Adv, vol. 3, no. 6, Jun. 2017, doi: 10.1126/sciadv.1700262. [95] E. Ivanov et al., “PLA/Graphene/MWCNT Composites with Improved Electrical and Thermal Properties Suitable for FDM 3D Printing Applications,” Applied Sciences, vol. 9, no. 6, p. 1209, Mar. 2019, doi: 10.3390/app9061209. [96] R. Matsuzaki et al., “Three-dimensional printing of continuous-fiber composites by in nozzle impregnation,” Sci Rep, vol. 6, no. 1, p. 23058, Mar. 2016, doi: 10.1038/srep23058. 73 [97] N. Li, Y. Li, and S. Liu, “Rapid prototyping of continuous carbon fiber reinforced polylactic acid composites by 3D printing,” J Mater Process Technol, vol. 238, pp. 218–225, Dec. 2016, doi: 10.1016/j.jmatprotec.2016.07.025. [98] X. Tian, T. Liu, Q. Wang, A. Dilmurat, D. Li, and G. Ziegmann, “Recycling and remanufacturing of 3D printed continuous carbon fiber reinforced PLA composites,” J Clean Prod, vol. 142, pp. 1609–1618, Jan. 2017, doi: 10.1016/j.jclepro.2016.11.139. [99] M. Kamaal, M. Anas, H. Rastogi, N. Bhardwaj, and A. Rahaman, “Effect of FDM process parameters on mechanical properties of 3D-printed carbon fibre–PLA composite,” Progress in Additive Manufacturing, vol. 6, no. 1, pp. 63–69, Feb. 2021, doi: 10.1007/s40964-020- 00145-3. [100] M. G. Ramachandran and N. Rajeswari, “Influence of Nano Silica on Mechanical and Tribological Properties of Additive Manufactured PLA Bio Nanocomposite,” Silicon, vol. 14, no. 2, pp. 703–709, Jan. 2022, doi: 10.1007/s12633-020-00878-4. [101] M.-H. Hsueh et al., “Effect of Printing Parameters on the Thermal and Mechanical Properties of 3D-Printed PLA and PETG, Using Fused Deposition Modeling,” Polymers (Basel), vol. 13, no. 11, p. 1758, May 2021, doi: 10.3390/polym13111758. [102] M.-H. Hsueh et al., “Effect of Printing Parameters on the Tensile Properties of 3D-Printed Polylactic Acid (PLA) Based on Fused Deposition Modeling,” Polymers (Basel), vol. 13, no. 14, p. 2387, Jul. 2021, doi: 10.3390/polym13142387. [103] N. Maguluri, G. Suresh, and K. V. Rao, “Assessing the effect of FDM processing parameters on mechanical properties of PLA parts using Taguchi method,” Journal of Thermoplastic Composite Materials, vol. 36, no. 4, pp. 1472–1488, Apr. 2023, doi: 10.1177/08927057211053036. [104] J. Butt, P. Oxford, S. Sadeghi-Esfahlani, M. Ghorabian, and H. Shirvani, “Hybrid Manufacturing and Mechanical Characterization of Cu/PLA Composites,” Arab J Sci Eng, vol. 45, no. 11, pp. 9339–9356, Nov. 2020, doi: 10.1007/s13369-020-04778-y. 74 [105] R. Muntean, S. Ambruș, N.-A. Sîrbu, and I. D. Uţu, “Tribological Properties of Different 3D Printed PLA Filaments,” Nano Hybrids and Composites, vol. 36, pp. 103–111, Jun. 2022, doi: 10.4028/p-8k2v92. [106] R. Rakshit, A. Ghosal, P. K, S. Podder, D. Misra, and S. C. Panja, “An Experimental Investigation of Surface Roughness and Print Duration on FDM Printed Polylactic Acid (PLA) Parts,” in 2022 Interdisciplinary Research in Technology and Management (IRTM), IEEE, Feb. 2022, pp. 1–5. doi: 10.1109/IRTM54583.2022.9791603. [107] ASTM International, “Standard Test Method for Compressive Properties of Rigid Plastics 1.” [108] Printables, “Ender 3 V2.” Accessed: Mar. 03, 2024. [Online]. Available: https://www.printables.com/model/248438-ender-3-v2-original-sd-card-files [109] 3D JAKE, “eSilk PLA Gold.” Accessed: May 11, 2024. [Online]. Available: https://www.3djake.uk/esun/esilk-pla-gold [110] S. Farah, D. G. Anderson, and R. Langer, “Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review,” Adv Drug Deliv Rev, vol. 107, pp. 367–392, Dec. 2016, doi: 10.1016/j.addr.2016.06.012 | en_US |
dc.identifier.uri | http://hdl.handle.net/123456789/2308 | |
dc.description | Supervised by Dr. Md. Zahid Hossain, Professor, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Industrial and Production Engineering, 2024 | en_US |
dc.description.abstract | This study introduces a novel bio-inspired honeycomb structure inspired by the intricate design of a coral skeleton. In contrast to conventional honeycomb structures, this innovative design reinforces the core with tubular columns and radial plates, drawing inspiration from the structure of a coral skeleton. The research aims to conduct a comprehensive comparative analysis of the structural performance and mechanical characteristics, specifically focusing on strength and energy absorption capability, between the proposed bio-inspired honeycomb structure (Specimen Type C) and a conventional honeycomb structure (Specimen Type H). The test specimens are designed using SolidWorks, a 3D modeling software, and are fabricated utilizing 3D printing technology with PLA filament through fused deposition modeling (FDM). The experimental procedures include static compressive tests for evaluating stress distribution, energy absorption capacity, and maximum load capacities. Results are validated against simulations, projecting superior mechanical properties for the bio-inspired structure. This study aims to contribute insights to advanced honeycomb design, potentially enhancing structural performance in diverse engineering. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh | en_US |
dc.subject | Honeycomb Structure, Bio-inspired, Additive Manufacturing, Compressive Test, Energy Absorption. | en_US |
dc.title | Compressive Strength Analysis of a Conventional and a Bio-Inspired 3D Printed Honeycomb Structure | en_US |
dc.type | Thesis | en_US |