dc.identifier.citation |
1. Z.-M. Gao and J. Zhao, “An Improved Grey Wolf Optimization Algorithm with Variable Weights,” Computational Intelligence and Neuroscience, vol. 2019, pp. 1–13, Jun. 2019, doi: 10.1155/2019/2981282. 2. Z. Hweju and K. Abou-El-Hossein, “Grey Relational analysis Parameter-Based predictive modelling of surface roughness,” Universal Journal of Mechanical Engineering, vol. 9, no. 3, pp. 21–26, Nov. 2021, doi: 10.13189/ujme.2021.090301. 3. C. L. Lin, “Use of the Taguchi Method and Grey Relational Analysis to Optimize Turning Operations with Multiple Performance Characteristics,” Materials and Manufacturing Processes, vol. 19, no. 2, pp. 209–220, Dec. 2004, doi: 10.1081/amp-120029852. 4. Y.-M. Xie, H.-P. Yu, J. Chen, and X.-Y. Ruan, “Application of grey relational analysis in sheet metal forming for multi-response quality characteristics,” Journal of Zhejiang University. Science A, vol. 8, no. 5, pp. 805–811, Apr. 2007, doi: 10.1631/jzus.2007.a0805. 5. V. P. Muddineni, A. K. Bonala, and S. R. Sandepudi, “Grey Relational Analysis based objective Function Optimization for Predictive Torque Control of Induction Machine,” 2020 IEEE International Conference on Power Electronics, Smart Grid and Renewable Energy (PESGRE2020), Jan. 2020, doi: 10.1109/pesgre45664.2020.9070723. 6. C.-T. Lin, C.-B. Chen, and W.-H. Wu, “Generalized form of grey relational grades,” Journal of Interdisciplinary Mathematics/Journal of Interdisciplinary Mathematics, vol. 7, no. 3, pp. 325–335, Jan. 2004, doi: 10.1080/09720502.2004.10700377. 7. E. Akbari, A. Rahimnejad, and S. A. Gadsden, “A greedy non‐hierarchical grey wolf optimizer for real‐world optimization,” Electronics Letters, vol. 57, no. 13, pp. 499–501, Apr. 2021, doi: 10.1049/ell2.12176. 8. S. Gupta and K. Deep, “A memory-based Grey Wolf Optimizer for global optimization tasks,” Applied Soft Computing, vol. 93, p. 106367, Aug. 2020, doi: 10.1016/j.asoc.2020.106367. 9. H. Rezaei, O. Bozorg-Haddad, and X. Chu, “Grey Wolf Optimization (GWO) Algorithm,” in Studies in computational intelligence, 2017, pp. 81–91. doi: 10.1007/978-981-10-5221-7_9. 10. B. Milenković, M. Krstić, and Đ. Jovanović, “Application of grey wolf algorithm for solving engineering optimization problems,” Tehnika, vol. 76, no. 1, pp. 50–57, Jan. 2021, doi: 10.5937/tehnika2101050m. 11. M. O. Okwu and L. K. Tartibu, “Grey Wolf Optimizer,” in Studies in computational intelligence, 2020, pp. 43–52. doi: 10.1007/978-3-030-61111-8_5. 12. M. H. Sulaiman, Z. Mustaffa, M. R. Mohamed, and O. Aliman, “Using the gray wolf optimizer for solving optimal reactive power dispatch problem,” Applied Soft Computing, vol. 32, pp. 286–292, Jul. 2015, doi: 10.1016/j.asoc.2015.03.041. 70 | Page 13. E. Dada, S. Joseph, D. Oyewola, A. A. Fadele, H. Chiroma, and S. M. Abdulhamid, “Application of Grey Wolf Optimization Algorithm: Recent Trends, Issues, and Possible Horizons,” Gazi University Journal of Science :, vol. 35, no. 2, pp. 485–504, Jun. 2022, doi: 10.35378/gujs.820885. 14. N. Issa, Z. Alaa, and I. Abed, “Solving Suggested Problems using Grey Wolf Optimization,” Proceedings of 2nd International Multi-Disciplinary Conference Theme: Integrated Sciences and Technologies, IMDC-IST 2021, 7-9 September 2021, Sakarya, Turkey, Jan. 2022, doi: 10.4108/eai.7-9-2021.2314893. 15. S. Kamal, S. Rani, and M. Rattan, “review of grey wolf optimizer and its applications,” International Journal of Engineering Applied Science and Technology, vol. 04, no. 11, pp. 208–211, Apr. 2020, doi: 10.33564/ijeast.2020.v04i11.036. 16. P. Pol and V. K. Pachghare, “of Meta-heuristic Optimization Approaches: in Virtue of Grey Wolf Optimization,” 2019 Global Conference for Advancement in Technology (GCAT), Oct. 2019, doi: 10.1109/gcat47503.2019.8978363. 17. A. Konak, D. W. Coit, and A. E. Smith, “Multi-objective optimization using genetic algorithms: A tutorial,” Reliability Engineering & Systems Safety, vol. 91, no. 9, pp. 992–1007, Sep. 2006, doi: 10.1016/j.ress.2005.11.018. 18. T. Ganesan, I. Elamvazuthi, K. Z. K. Shaari, and P. Vasant, “An algorithmic framework for multiobjective optimization,” ˜the œScientific World Journal/TheScientificWorldjournal, vol. 2013, pp. 1–11, Jan. 2013, doi: 10.1155/2013/859701. 19. S. A. Yasear and K. R. Ku-Mahamud, “review of the multi-objective swarm intelligence optimization algorithms,” Journal of ICT, vol. 20, Jan. 2021, doi: 10.32890/jict2021.20.2.3. 20. M. Azzeh, D. Neagu, and P. I. Cowling, “Fuzzy grey relational analysis for software effort estimation,” Empirical Software Engineering, vol. 15, no. 1, pp. 60–90, Jul. 2009, doi: 10.1007/s10664-009-9113-0. 21. S. Mirjalili, S. M. Mirjalili, and A. Lewis, “Grey Wolf Optimizer,” Advances in Engineering Software, vol. 69, pp. 46–61, Mar. 2014, doi: 10.1016/j.advengsoft.2013.12.007. 22. S. Mirjalili and A. Lewis, “The whale Optimization Algorithm,” Advances in Engineering Software, vol. 95, pp. 51–67, May 2016, doi: 10.1016/j.advengsoft.2016.01.008. 23. M. H. Tanvir et al., “Multi-Objective optimization of turning operation of stainless steel using a hybrid whale optimization algorithm,” Journal of Manufacturing and Materials Processing, vol. 4, no. 3, p. 64, Jul. 2020, doi: 10.3390/jmmp4030064. 24. R. Q. Sardiñas, M. R. Santana, and E. A. Brindis, “Genetic algorithm-based multi-objective optimization of cutting parameters in turning processes,” Engineering Applications of Artificial Intelligence, vol. 19, no. 2, pp. 127–133, Mar. 2006, doi: 10.1016/j.engappai.2005.06.007. 25. Y. Su, G. Zhao, Y. Zhao, J. Meng, and C. Li, “Multi-Objective optimization of cutting parameters in turning AISI 304 austenitic stainless steel,” Metals, vol. 10, no. 2, p. 217, Feb. 2020, doi: 10.3390/met10020217. 71 | Page 26. F. Kolahan, R. Golmezerji, and M. A. Moghaddam, “Multi objective optimization of turning process using grey relational analysis and simulated annealing algorithm,” Applied Mechanics and Materials, vol. 110–116, pp. 2926–2932, Oct. 2011, doi: 10.4028/www.scientific.net/amm.110-116.2926. |
en_US |