dc.identifier.citation |
[1] Y. M. Kim, J. L. Sohn, and E. S. Yoon, “Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine,” Energy, vol. 118, pp. 893–905, Jan. 2017, doi: 10.1016/J.ENERGY.2016.10.106. [2] D. Alfani, M. Binotti, E. Macchi, P. Silva, and M. Astolfi, “sCO2 power plants for waste heat recovery: design optimization and part-load operation strategies,” Appl Therm Eng, vol. 195, p. 117013, Aug. 2021, doi: 10.1016/J.APPLTHERMALENG.2021.117013. [3] I. Dincer and M. A. Rosen, “Chemical exergy,” Exergy, pp. 37–60, 2021, doi: 10.1016/B978-0-12- 824372-5.00003-8. [4] I. Dincer and M. A. Rosen, “Thermodynamic fundamentals,” Exergy, pp. 1–22, 2021, doi: 10.1016/B978-0-12-824372-5.00001-4. [5] Y. M. Kim, J. L. Sohn, S. Yoon, and S. Korea, “Supercritical CO 2 Rankine cycles for waste heat recovery from gas turbine”, doi: 10.1016/j.energy.2016.10.106. [6] M. W. Faruque, Y. Khan, M. H. Nabil, and M. M. Ehsan, “Parametric analysis and optimization of a novel cascade compression-absorption refrigeration system integrated with a flash tank and a reheater,” Results in Engineering, vol. 17, p. 101008, Mar. 2023, doi: 10.1016/J.RINENG.2023.101008. [7] I. Dincer and M. A. Rosen, “Exergy and energy analyses,” Exergy, pp. 23–35, 2021, doi: 10.1016/B978-0-12-824372-5.00002-6. [8] Z. Bai, G. Zhang, Y. Li, G. Xu, and Y. Yang, “A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants,” Energy, vol. 142, pp. 731–738, Jan. 2018, doi: 10.1016/J.ENERGY.2017.09.121. [9] M. E. Tat, “Cetane number effect on the energetic and exergetic efficiency of a diesel engine fuelled with biodiesel,” Fuel Processing Technology, vol. 92, no. 7, pp. 1311–1321, Jul. 2011, doi: 10.1016/J.FUPROC.2011.02.006. [10] M. Saghafifar, A. Omar, K. Mohammadi, A. Alashkar, and M. Gadalla, “A review of unconventional bottoming cycles for waste heat recovery: Part I – Analysis, design, and optimization,” Energy Convers Manag, vol. 198, p. 110905, Oct. 2019, doi: 10.1016/J.ENCONMAN.2018.10.047. [11] F. Zhang et al., “Proposal and performance assessment of a combined system based on a supercritical carbon dioxide power cycle integrated with a double-effect absorption power cycle,” Energy Convers Manag, vol. 233, p. 113923, Apr. 2021, doi: 10.1016/J.ENCONMAN.2021.113923. [12] C. P. Jawahar and R. Saravanan, “Experimental studies on air-cooled NH3–H2O based modified gax absorption cooling system,” International Journal of Refrigeration, vol. 34, no. 3, pp. 658–666, May 2011, doi: 10.1016/J.IJREFRIG.2010.11.005. [13] M. S. Kim, Y. Ahn, B. Kim, and J. I. Lee, “Study on the supercritical CO2 power cycles for landfill gas firing gas turbine bottoming cycle,” Energy, vol. 111, pp. 893–909, Sep. 2016, doi: 10.1016/J.ENERGY.2016.06.014. [14] L. Wang, L. ming Pan, J. Wang, D. Chen, Y. Huang, and L. Hu, “Investigation on the temperature sensitivity of the S-CO2 Brayton cycle efficiency,” Energy, vol. 178, pp. 739–750, Jul. 2019, doi: 10.1016/J.ENERGY.2019.04.100. [15] Y. M. Kim, J. L. Sohn, and E. S. Yoon, “Supercritical CO2 Rankine cycles for waste heat recovery from gas turbine,” Energy, vol. 118, pp. 893–905, Jan. 2017, doi: 10.1016/J.ENERGY.2016.10.106. [16] M. Atif and F. A. Al-Sulaiman, “Development of a mathematical model for optimizing a heliostat field layout using differential evolution method,” Int J Energy Res, vol. 39, no. 9, pp. 1241–1255, Jul. 2015, doi: 10.1002/ER.3325. [17] M. Atif and F. A. Al-Sulaiman, “Optimization of heliostat field layout in solar central receiver systems on annual basis using differential evolution algorithm,” Energy Convers Manag, vol. 95, pp. 67 1–9, May 2015, doi: 10.1016/J.ENCONMAN.2015.01.089. [18] O. Kizilkan and H. Yamaguchi, “Feasibility research on the novel experimental solar-assisted CO2 based Rankine cycle integrated with absorption refrigeration,” Energy Convers Manag, vol. 205, Feb. 2020, doi: 10.1016/J.ENCONMAN.2019.112390. [19] O. Kizilkan, S. Khanmohammadi, and H. Yamaguchi, “Two-objective optimization of a transcritical carbon dioxide based Rankine cycle integrated with evacuated tube solar collector for power and heat generation,” Appl Therm Eng, vol. 182, Jan. 2021, doi: 10.1016/J.APPLTHERMALENG.2020.116079. [20] M. A. Reyes-Belmonte, A. Sebastián, M. Romero, and J. González-Aguilar, “Optimization of a recompression supercritical carbon dioxide cycle for an innovative central receiver solar power plant,” Energy, vol. 112, pp. 17–27, Oct. 2016, doi: 10.1016/J.ENERGY.2016.06.013. [21] Z. Bai, G. Zhang, Y. Li, G. Xu, and Y. Yang, “A supercritical CO2 Brayton cycle with a bleeding anabranch used in coal-fired power plants,” Energy, vol. 142, pp. 731–738, Jan. 2018, doi: 10.1016/J.ENERGY.2017.09.121. [22] F. Crespi, G. Gavagnin, D. Sánchez, and G. S. Martínez, “Supercritical carbon dioxide cycles for power generation: A review,” Appl Energy, vol. 195, pp. 152–183, 2017, doi: 10.1016/J.APENERGY.2017.02.048. [23] J. Zhang, “A SYSTEMATIC COMPARISON OF SUPERCRITICAL CO2 BRAYTON CYCLE LAYOUTS FOR CONCENTRATED SOLAR POWER WITH A FOCUS ON THERMAL ENERGY STORAGE UTILIZATION,” 2019. [24] Y. Li, J. Yu, H. Qin, Z. Sheng, and Q. Wang, “An experimental investigation on a modified cascade refrigeration system with an ejector,” International journal of refrigeration, vol. 96, pp. 63–69, Dec. 2018, doi: 10.1016/J.IJREFRIG.2018.09.015. [25] H. Wang, Y. Song, and F. Cao, “Experimental investigation on the pull-down performance of a -80°C ultra-low temperature freezer,” International Journal of Refrigeration-revue Internationale Du Froid, vol. 119, pp. 1–10, Nov. 2020, doi: 10.1016/J.IJREFRIG.2020.04.030. [26] D. Liang, M. Ibrahim, T. Saeed, A. M. El-Refaey, Z. Li, and M. A. Fagiry, “Simulation of a Trombe wall with a number of semicircular fins placed on the absorber plate for heating a room in the presence of nano-PCM,” Journal of Building Engineering, vol. 50, Jun. 2022, doi: 10.1016/J.JOBE.2022.104173. [27] F. A. Almehmadi, K. P. Hallinan, R. B. Mulford, and S. A. Alqaed, “Technology to Address Food Deserts: Low Energy Corner Store Groceries with Integrated Agriculture Greenhouse,” Sustainability, vol. 12, no. 18, Sep. 2020, doi: 10.3390/SU12187565. [28] S. Alqaed, J. Mustafa, M. Sharifpur, and G. Cheraghian, “Using nanoparticles in solar collector to enhance solar-assisted hot process stream usefulness,” Sustainable Energy Technologies and Assessments, vol. 52, Aug. 2022, doi: 10.1016/J.SETA.2022.101992. [29] N. Johnson, J. Baltrusaitis, and W. L. Luyben, “Design and control of a cryogenic multi-stage compression refrigeration process,” Chemical Engineering Research & Design, vol. 121, pp. 360– 367, 2017, doi: 10.1016/J.CHERD.2017.03.018. [30] I. Kayes, R. E. Ratul, A. Abid, F. B. Majmader, Y. Khan, and M. M. Ehsan, “Multi-objective optimization and 4E (energy, exergy, economy, environmental impact) analysis of a triple cascade refrigeration system,” Heliyon, vol. 10, no. 11, Jun. 2024, doi: 10.1016/J.HELIYON.2024.E31655. [31] Z. Liu, K. Yuan, Y. Ling, H. Tan, and S. Yang, “Experimental study on a -86 °C cascade refrigeration unit with environmental-friendly refrigerants R290-R170,” Environ Sci Pollut Res Int, vol. 30, no. 43, pp. 97339–97352, Sep. 2023, doi: 10.1007/S11356-023-29240-Y. [32] S. Alqaed, “Effect of annual solar radiation on simple façade, double-skin facade and double-skin facade filled with phase change materials for saving energy,” Sustainable Energy Technologies and Assessments, vol. 51, Jun. 2022, doi: 10.1016/J.SETA.2021.101928. 68 [33] C. Vereda, R. Ventas, A. Lecuona, and R. López, “Single-effect absorption refrigeration cycle boosted with an ejector-adiabatic absorber using a single solution pump,” International Journal of Refrigeration, vol. 38, no. 1, pp. 22–29, Feb. 2014, doi: 10.1016/J.IJREFRIG.2013.10.010. [34] A. M. Abed, M. A. Alghoul, R. Sirawn, A. N. Al-Shamani, and K. Sopian, “Performance enhancement of ejector-absorption cooling cycle by re-arrangement of solution streamlines and adding RHE,” Appl Therm Eng, vol. 77, pp. 65–75, Feb. 2015, doi: 10.1016/J.APPLTHERMALENG.2014.12.003. [35] R. Gomri, “Second law comparison of single effect and double effect vapour absorption refrigeration systems,” Energy Convers Manag, vol. 50, no. 5, pp. 1279–1287, May 2009, doi: 10.1016/J.ENCONMAN.2009.01.019. [36] M. U. Arshad, M. U. Ghani, A. Ullah, A. Güngör, and M. Zaman, “Thermodynamic analysis and optimization of double effect absorption refrigeration system using genetic algorithm,” Energy Convers Manag, vol. 192, pp. 292–307, Jul. 2019, doi: 10.1016/J.ENCONMAN.2019.03.083. [37] R. Maryami and A. A. Dehghan, “An exergy based comparative study between LiBr/water absorption refrigeration systems from half effect to triple effect,” Appl Therm Eng, vol. 124, pp. 103–123, Sep. 2017, doi: 10.1016/J.APPLTHERMALENG.2017.05.174. [38] A. Razmi, M. Soltani, F. M. Kashkooli, and L. Garousi Farshi, “Energy and exergy analysis of an environmentally-friendly hybrid absorption/recompression refrigeration system,” Energy Convers Manag, vol. 164, pp. 59–69, May 2018, doi: 10.1016/J.ENCONMAN.2018.02.084. [39] A. R. Razmi, A. Arabkoohsar, and H. Nami, “Thermoeconomic analysis and multi-objective optimization of a novel hybrid absorption/recompression refrigeration system,” Energy, vol. 210, p. 118559, Nov. 2020, doi: 10.1016/J.ENERGY.2020.118559 |
en_US |