A Numerical Investigation on Heat Transfer Characteristics for Different Radiator Designs with Nanofluid Coolants

Show simple item record

dc.contributor.author Salsabila, Saraban
dc.contributor.author Julfikar, MD Yousuf
dc.date.accessioned 2025-02-26T09:23:05Z
dc.date.available 2025-02-26T09:23:05Z
dc.date.issued 2024-07-04
dc.identifier.citation [1] K. Wani, K. Sose, M. Shitole, P. Kokad, N. Patil, and A. Professor, “Basics of Radiator and Improvement Techniques,” 2019. [Online]. Available: www.ijisrt.com785 [2] Jack. Erjavec, Automotive technology : a systems approach. Delmar, 2010. [3] T. Ismael, S. B. Yun, and F. Ulugbek, “Radiator Heat Dissipation Performance,” Journal of Electronics Cooling and Thermal Control, vol. 06, no. 02, pp. 88–96, 2016, doi: 10.4236/jectc.2016.62008. [4] V. R. Patil, S. S. Patil, and V. Kumbhar, “Review of Problems of Heat Transfer in Car Radiator and Suggested Solutions,” International Journal of Scientific Development and Research (IJSDR), vol. 2, no. 1. 2017. [5] S. Padmaraman, N. R. Mathivanan, and B. R. Ponangi, “Heat dissipation characteristics of a FSAE racecar radiator,” International Journal of Heat and Technology, vol. 39, no. 5, pp. 1667–1672, Oct. 2021, doi: 10.18280/IJHT.390531. [6] S. A. Ahmed, M. Ozkaymak, A. Sözen, T. Menlik, and A. Fahed, “Improving car radiator performance by using TiO2-water nanofluid,” Engineering Science and Technology, an International Journal, vol. 21, no. 5, pp. 996–1005, Oct. 2018, doi: 10.1016/j.jestch.2018.07.008. [7] Inc. Runtal North America, “ Curved Radiators and Segmented Radiators,” Runtal North America, Inc. [8] U. Santosh, B. M. T. Student, and N. Hymavathi, “Heat Transfer Performance of Radiator Using Different Nano Fluids.” [9] J. M. Chakma and M. Z. Abedin, “Review on Heat Transfer Enhancement by Rectangular Fin,” International Journal of Engineering Materials and Manufacture, vol. 6, no. 2, Apr. 2021, doi: 10.26776/ijemm.06.02.2021.01. [10] F. Alnaimat, M. Ziauddin, and B. Mathew, “Enhancing Heat Transfer of Rectangular Fins Implementing Constructal Optimization Approach.” [11] S. Mirapalli and K. P .S, “Heat Transfer Analysis on a Triangular Fin,” International Journal of Engineering Trends and Technology, vol. 19, no. 5, pp. 279–284, Jan. 2015, doi: 10.14445/22315381/IJETT-V19P249. 89 [12] S. Souida, D. Sahel, H. Ameur, and A. Yousfi, “Numerical Simulation of Heat Transfer Behaviors in Conical Pin Fins Heat Sinks,” Acta Mechanica Slovaca, vol. 26, no. 3, pp. 32–41, Sep. 2022, doi: 10.21496/ams.2023.002. [13] J. Sarkar, Analysis of wavy fin tube automotive radiator using nanofluids as coolants R Analysis of wavy fin tube automotive radiator using nanofluids as coolants. 2013. [Online]. Available: https://www.researchgate.net/publication/260215942 [14] J. Sarkar and R. Tarodiya, “Performance analysis of louvered fin tube automotive radiator using nanofluids as coolants,” Int J Nanomanuf, vol. 9, no. 1, pp. 51–65, 2013, doi: 10.1504/IJNM.2013.052881. [15] N. N. Sheikh, B. Kumar, and N. K. Saini, “A Review Paper on Pin Fin Efficiency Enhancement,” 2019. [Online]. Available: https://www.researchgate.net/publication/333815784 [16] M. M. Selvam, R. Paul Linga Prakash, M. Selvam, A. Alagu Sundara Pandian, S. Palani, and K. A. Harish, “Design and Modification of Radiator in I.C. Engine Cooling System for Maximizing Efficiency and Life Nation engineering college Design and Modification of Radiator in I.C. Engine Cooling System for Maximizing Efficiency and Life,” Article in Indian Journal of Science and Technology, vol. 9, no. 2, 2016, doi: 10.17485/ijst/2016/V9i2. [17] J. D. Halderman, Automotive technology : principles, diagnosis, and service. Pearson Prentice Hall, 2012. [18] R. A and S. Chakraborty, “Microchannel heat sink with microstructured wall — A critical study on fluid flow and heat transfer characteristics,” Thermal Science and Engineering Progress, vol. 38, 2023, doi: 10.1016/j.tsep.2022.101613. [19] S. Choi, “Nanofluids for Improved Efficiency in Cooling Systems Work sponsored by Energy Efficiency and Renewable Energy,” 2006. [20] S. H. Kim, S. R. Choi, and D. Kim, “Thermal conductivity of metal-oxide nanofluids: Particle size dependence and effect of laser irradiation,” J Heat Transfer, vol. 129, no. 3, 2007, doi: 10.1115/1.2427071. [21] E. Y. Ng, P. W. Johnson, and S. Watkins, “An analytical study on heat transfer performance of radiators with non-uniform airflow distribution,” Proceedings of the 90 Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 219, no. 12, pp. 1451–1467, 2005, doi: 10.1243/095440705X35116. [22] N. ’ Aziemah, B. Norazman, and A. S. Tijani, “Heat Transfer Characteristics of Aluminium Oxide-Based Ethylene Gycol/Water Nanofluids as a Coolant for Car Radiator,” vol. 2, no. 1, 2022, doi: 10.24191/jaeds.v2i1.49. [23] L. Cheng, E. P. Bandarra Filho, and J. R. Thome, “Nanofluid two-phase flow and thermal physics: A new research frontier of nanotechnology and its challenges,” Journal of Nanoscience and Nanotechnology, vol. 8, no. 7. pp. 3315–3332, Jul. 2008. doi: 10.1166/jnn.2008.413. [24] D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, no. 2, pp. 141–150, Apr. 2009, doi: 10.1016/j.partic.2009.01.007. [25] G. Huminic and A. Huminic, “Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids,” Energy Convers Manag, vol. 76, pp. 393–399, 2013, doi: 10.1016/j.enconman.2013.07.026. [26] M. Shanbedi, S. Z. Heris, A. Amiri, E. Hosseinipour, H. Eshghi, and S. N. Kazi, “Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube,” Energy Convers Manag, vol. 105, pp. 1366–1376, Nov. 2015, doi: 10.1016/j.enconman.2015.09.002. [27] S. Z. Heris, F. Mohammadpur, O. Mahian, and A. Z. Sahin, “Experimental study of two phase closed thermosyphon using cuo/water nanofluid in the presence of electric field,” Experimental Heat Transfer, vol. 28, no. 4, pp. 328–343, Jul. 2015, doi: 10.1080/08916152.2014.883448. [28] S. Z. Heris, F. Mohammadpur, O. Mahian, and A. Z. Sahin, “Experimental study of two phase closed thermosyphon using cuo/water nanofluid in the presence of electric field,” Experimental Heat Transfer, vol. 28, no. 4, 2015, doi: 10.1080/08916152.2014.883448. [29] G. Huminic and A. Huminic, “Numerical study on heat transfer characteristics of thermosyphon heat pipes using nanofluids,” Energy Convers Manag, vol. 76, 2013, doi: 10.1016/j.enconman.2013.07.026. 91 [30] M. Shanbedi, S. Z. Heris, A. Amiri, E. Hosseinipour, H. Eshghi, and S. N. Kazi, “Synthesis of aspartic acid-treated multi-walled carbon nanotubes based water coolant and experimental investigation of thermal and hydrodynamic properties in circular tube,” Energy Convers Manag, vol. 105, 2015, doi: 10.1016/j.enconman.2015.09.002. [31] D. Wen, G. Lin, S. Vafaei, and K. Zhang, “Review of nanofluids for heat transfer applications,” Particuology, vol. 7, no. 2, pp. 141–150, Apr. 2009, doi: 10.1016/j.partic.2009.01.007. [32] S. Z. Heris, M. Shokrgozar, S. Poorpharhang, M. Shanbedi, and S. H. Noie, “Experimental Study of Heat Transfer of a Car Radiator with CuO/Ethylene Glycol Water as a Coolant,” J Dispers Sci Technol, vol. 35, no. 5, pp. 677–684, 2014, doi: 10.1080/01932691.2013.805301. [33] S. M. Peyghambarzadeh, S. H. Hashemabadi, M. S. Jamnani, and S. M. Hoseini, “Improving the cooling performance of automobile radiator with Al 2O3/water nanofluid,” Appl Therm Eng, vol. 31, no. 10, pp. 1833–1838, Jul. 2011, doi: 10.1016/j.applthermaleng.2011.02.029. [34] C. T. Nguyen, G. Roy, C. Gauthier, and N. Galanis, “Heat transfer enhancement using Al₂O₃-water nanofluid for an electronic liquid cooling system,” Appl Therm Eng, vol. 27, no. 8–9, pp. 1501–1506, Jun. 2007, doi: 10.1016/j.applthermaleng.2006.09.028. [35] S. Z. Heris, M. Shokrgozar, S. Poorpharhang, M. Shanbedi, and S. H. Noie, “Experimental Study of Heat Transfer of a Car Radiator with CuO/Ethylene Glycol Water as a Coolant,” J Dispers Sci Technol, vol. 35, no. 5, pp. 677–684, 2014, doi: 10.1080/01932691.2013.805301. [36] P. Samira, Z. H. Saeed, S. Motahare, and K. Mostafa, “Pressure drop and thermal performance of CuO/ethylene glycol (60%)-water (40%) nanofluid in car radiator,” Korean Journal of Chemical Engineering, vol. 32, no. 4, pp. 609–616, Apr. 2015, doi: 10.1007/s11814-014-0244-7. [37] A. R. I. Ali and B. Salam, “A review on nanofluid: preparation, stability, thermophysical properties, heat transfer characteristics and application,” SN Applied 92 Sciences, vol. 2, no. 10. Springer Nature, Oct. 01, 2020. doi: 10.1007/s42452-020- 03427-1. [38] J. Sarkar, “A critical review on convective heat transfer correlations of nanofluids,” Renewable and Sustainable Energy Reviews, vol. 15, no. 6. pp. 3271–3277, Aug. 2011. doi: 10.1016/j.rser.2011.04.025. [39] Y. Hwang, H. S. Park, J. K. Lee, and W. H. Jung, “Thermal conductivity and lubrication characteristics of nanofluids,” Current Applied Physics, vol. 6, no. SUPPL. 1, Aug. 2006, doi: 10.1016/j.cap.2006.01.014. [40] S. W. Lee, S. D. Park, S. Kang, I. C. Bang, and J. H. Kim, “Investigation of viscosity and thermal conductivity of SiC nanofluids for heat transfer applications,” Int J Heat Mass Transf, vol. 54, no. 1–3, pp. 433–438, Jan. 2011, doi: 10.1016/j.ijheatmasstransfer.2010.09.026. [41] International Atomic Energy Agency., Thermophysical properties of materials for nuclear engineering : a tutorial and collection of data. [42] D. D. L. Chung, “Materials for thermal conduction.” [Online]. Available: www.elsevier.com/locate/apthermeng [43] A. M. Hofmeister, “Thermal diffusivity and thermal conductivity of single-crystal MgO and Al₂O₃and related compounds as a function of temperature,” Phys Chem Miner, vol. 41, no. 5, pp. 361–371, May 2014, doi: 10.1007/s00269-014-0655-3. [44] “Crc Materials Science And Engineering Handbook-1928S”. [45] Anbu Clemensis Johnson and A. Sadoon Mohammed, “SIMULATION STUDY OF FINNED DOUBLE PIPE HEAT EXCHANGER,” EPH - International Journal of Science And Engineering, vol. 3, no. 3, pp. 75–80, Sep. 2017, doi: 10.53555/eijse.v3i3.95. [46] A. Gakare, A. Sharma, M. Gaurav Saxena, and M. T. Students, “Simulation Software Based Analysis of Automotive Radiators: A Review,” Journal of Automation and Automobile Engineering, vol. 4, no. 1, 2019, doi: 10.5281/zenodo.2563431. [47] N. ’ Aziemah, B. Norazman, and A. S. Tijani, “Heat Transfer Characteristics of Aluminium Oxide-Based Ethylene Gycol/Water Nanofluids as a Coolant for Car Radiator,” vol. 2, no. 1, 2022, doi: 10.24191/jaeds.v2i1.49. 93 [48] A. S. Tijani and A. S. bin Sudirman, “Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al₂O₃/CuO based nanofluid as a coolant for car radiator,” Int J Heat Mass Transf, vol. 118, pp. 48–57, Mar. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.083. [49] A. S. Tijani and A. S. bin Sudirman, “Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al₂O₃/CuO based nanofluid as a coolant for car radiator,” Int J Heat Mass Transf, vol. 118, pp. 48–57, Mar. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.083. [50] M. U. Sajid and H. M. Ali, “Recent advances in application of nanofluids in heat transfer devices: A critical review,” Renewable and Sustainable Energy Reviews, vol. 103. Elsevier Ltd, pp. 556–592, Apr. 01, 2019. doi: 10.1016/j.rser.2018.12.057. [51] A. Naufal bin Samsudin, A. Salami Tijani, S. Thottathil Abdulrahman, J. Kubenthiran, and I. Kolawole Muritala, “Thermal-hydraulic modeling of heat sink under force convection: Investigating the effect of wings on new designs,” Alexandria Engineering Journal, vol. 65, pp. 709–730, Feb. 2023, doi: 10.1016/j.aej.2022.10.045. [52] N. ’ Aziemah, B. Norazman, and A. S. Tijani, “Heat Transfer Characteristics of Aluminium Oxide-Based Ethylene Gycol/Water Nanofluids as a Coolant for Car Radiator,” vol. 2, no. 1, 2022, doi: 10.24191/jaeds.v2i1.49. [53] A. Naufal bin Samsudin, A. Salami Tijani, S. Thottathil Abdulrahman, J. Kubenthiran, and I. Kolawole Muritala, “Thermal-hydraulic modeling of heat sink under force convection: Investigating the effect of wings on new designs,” Alexandria Engineering Journal, vol. 65, pp. 709–730, Feb. 2023, doi: 10.1016/j.aej.2022.10.045. [54] A. M. Hussein, “Thermal performance and thermal properties of hybrid nanofluid laminar flow in a double pipe heat exchanger,” Exp Therm Fluid Sci, vol. 88, 2017, doi: 10.1016/j.expthermflusci.2017.05.015. [55] V. Deepak Dwivedi and R. Rai, “Modeling and Fluid Flow Analysis of Wavy Fin Based Automotive Radiator,” 2015. [Online]. Available: www.ijera.com [56] A. S. Tijani and A. S. bin Sudirman, “Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al₂O₃/CuO based nanofluid as a coolant 94 for car radiator,” Int J Heat Mass Transf, vol. 118, pp. 48–57, Mar. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.083. [57] A. S. Tijani and A. S. bin Sudirman, “Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al₂O₃/CuO based nanofluid as a coolant for car radiator,” Int J Heat Mass Transf, vol. 118, pp. 48–57, Mar. 2018, doi: 10.1016/j.ijheatmasstransfer.2017.10.083. [58] S. Ali, T. Dbouk, G. Wang, D. Wang, and D. Drikakis, “Advancing thermal performance through vortex generators morphing,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-022-25516-4. [59] B. R. Bull and A. M. Jacobi, “A Study of the Application of Vortex Generators to Enhance the Air-Side Performance of Heat Exchangers,” 2003 en_US
dc.identifier.uri http://hdl.handle.net/123456789/2313
dc.description Supervised by Dr. Mohammad Ahsan Habib, Professor, Department of Production and Mechanical Engineering(MPE), Islamic University of Technology (IUT) Board Bazar, Gazipur-1704, Bangladesh This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Mechanical Engineering, 2024 en_US
dc.description.abstract This thesis presents a comprehensive numerical investigation into the heat transfer characteristics of different radiator designs using nanofluid coolants. The study focuses on evaluating and comparing the thermal performance of radiators equipped with various fin configurations, including triangular, rectangular, and cone pin fins. Additionally, the influence of nanofluid additives, specifically Al₂O₃ and CuO nanoparticles at concentrations of 0.05%, 0.15%, and 0.30%, is analyzed to assess their impact on heat dissipation efficiency. Numerical simulations are conducted using ANSYS Fluent to simulate fluid flow and heat transfer processes within the radiators. Key parameters such as outlet temperature, temperature difference, and heat transfer rate are analyzed to understand the effectiveness of each radiator design in enhancing thermal performance. The results highlight significant variations in heat transfer rates among different fin designs and nanofluid concentrations, providing valuable insights into optimizing radiator configurations for improved heat dissipation in various engineering applications en_US
dc.language.iso en en_US
dc.publisher Department of Mechanical and Production Engineering(MPE), Islamic University of Technology(IUT), Board Bazar, Gazipur-1704, Bangladesh en_US
dc.subject Nanofluid, Coolant, cfd, Heat exchanger, Radiator en_US
dc.title A Numerical Investigation on Heat Transfer Characteristics for Different Radiator Designs with Nanofluid Coolants en_US
dc.type Thesis en_US


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search IUT Repository


Advanced Search

Browse

My Account

Statistics